-
Previous Article
Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction
- CPAA Home
- This Issue
-
Next Article
Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows
Spectral method for deriving multivariate Poisson summation formulae
1. | Department of Mathematics, Atilim University, 06836 Incek, Ankara, Turkey |
References:
[1] |
T. M. Apostol, "Mathematical Analysis," 2nd edition, Addison-Wesley, 1974. |
[2] |
G. I. Arkhipov and V. N. Chubarikov, On some summation formulas, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 5 (1987), 29-32 (Russian). |
[3] |
B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series. V, Trans. Amer. Math. Soc., 160 (1971), 139-156.
doi: 10.1090/S0002-9947-71-99991-0. |
[4] |
M. S. Birman and M. Z. Solomjak, "Spectral Theory of Self-Adjoint Operators in Hilbert Space," Dordrecht, 1987. |
[5] |
M. S. P. Eastham, "The Spectral Theory of Perodic Differential Equations," Scottish Academic Press, 1973. |
[6] |
G. H. Hardy, On the expression of a number as a sum of two squares, Quart. J. Math., 46 (1915), 263-283. |
[7] |
V. K. Ivanov, A generalization of the Voronoi-Hardy identity, Sibirsk Mat. Z., 3 (1962), 195-212 (Russian). |
[8] |
V. K. Ivanov, Higher-dimensional generalizations of the Euler summation formula, Izv. Vysš. Učebn. Zaved. Matematika, 6 (1963), 72-80 (Russian). |
[9] |
N. N. Lebedev, "Special Functions and Their Applications," Dover, 1972. |
[10] | |
[11] |
C. Müller, Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie, Abh. Math. Sem. Univ. Hamburg, 19 (1954), 41-62. |
[12] |
C. Müller, Eine Formel der analytischen Zahlentheorie, Abh. Math. Sem. Univ. Hamburg, 19 (1954), 62-65. |
[13] |
C. Müller, Eine Erweiterung der Hardyschen Identität, Abh. Math. Sem. Univ. Hamburg, 19 (1954), 66-76. |
[14] |
M. N. Olevskii, On a summation formula connected with the Hankel transformation, Acad. Sci. USSR Doklady, 46 (1945), 387-391 (Russian). |
[15] |
E. C. Titchmarsh, "Eigenfunction Expansions Associated with Second-Order Differential Equations," Vol. 2, Oxford University Press, 1958. |
[16] |
G. F. Voronoi, Sur la dé veloppement, à l'aide des fonctions cylindriques, des sommes doubles $\sum f(pm^{2}+2qmn+rn^2)$, où $p m^2+2qmn+rn^2$ est une forme positive à coefficients entiers, (verhandlungen des Dritten Internat. Math.-Kongr, Heidelberg), Teubner, Leipzig, 1905, pp. 241-245. |
[17] |
V. V. Zhuk, Supplements to Poisson's summation formula and to the Hardy-Young theorem, Vestnik St. Petersburg Univ. Math., 25 (1992), 7-13. |
show all references
References:
[1] |
T. M. Apostol, "Mathematical Analysis," 2nd edition, Addison-Wesley, 1974. |
[2] |
G. I. Arkhipov and V. N. Chubarikov, On some summation formulas, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 5 (1987), 29-32 (Russian). |
[3] |
B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series. V, Trans. Amer. Math. Soc., 160 (1971), 139-156.
doi: 10.1090/S0002-9947-71-99991-0. |
[4] |
M. S. Birman and M. Z. Solomjak, "Spectral Theory of Self-Adjoint Operators in Hilbert Space," Dordrecht, 1987. |
[5] |
M. S. P. Eastham, "The Spectral Theory of Perodic Differential Equations," Scottish Academic Press, 1973. |
[6] |
G. H. Hardy, On the expression of a number as a sum of two squares, Quart. J. Math., 46 (1915), 263-283. |
[7] |
V. K. Ivanov, A generalization of the Voronoi-Hardy identity, Sibirsk Mat. Z., 3 (1962), 195-212 (Russian). |
[8] |
V. K. Ivanov, Higher-dimensional generalizations of the Euler summation formula, Izv. Vysš. Učebn. Zaved. Matematika, 6 (1963), 72-80 (Russian). |
[9] |
N. N. Lebedev, "Special Functions and Their Applications," Dover, 1972. |
[10] | |
[11] |
C. Müller, Eine Verallgemeinerung der Eulerschen Summenformel und ihre Anwendung auf Fragen der analytischen Zahlentheorie, Abh. Math. Sem. Univ. Hamburg, 19 (1954), 41-62. |
[12] |
C. Müller, Eine Formel der analytischen Zahlentheorie, Abh. Math. Sem. Univ. Hamburg, 19 (1954), 62-65. |
[13] |
C. Müller, Eine Erweiterung der Hardyschen Identität, Abh. Math. Sem. Univ. Hamburg, 19 (1954), 66-76. |
[14] |
M. N. Olevskii, On a summation formula connected with the Hankel transformation, Acad. Sci. USSR Doklady, 46 (1945), 387-391 (Russian). |
[15] |
E. C. Titchmarsh, "Eigenfunction Expansions Associated with Second-Order Differential Equations," Vol. 2, Oxford University Press, 1958. |
[16] |
G. F. Voronoi, Sur la dé veloppement, à l'aide des fonctions cylindriques, des sommes doubles $\sum f(pm^{2}+2qmn+rn^2)$, où $p m^2+2qmn+rn^2$ est une forme positive à coefficients entiers, (verhandlungen des Dritten Internat. Math.-Kongr, Heidelberg), Teubner, Leipzig, 1905, pp. 241-245. |
[17] |
V. V. Zhuk, Supplements to Poisson's summation formula and to the Hardy-Young theorem, Vestnik St. Petersburg Univ. Math., 25 (1992), 7-13. |
[1] |
Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22 |
[2] |
Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51 |
[3] |
Alexei A. Ilyin. Lower bounds for the spectrum of the Laplace and Stokes operators. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 131-146. doi: 10.3934/dcds.2010.28.131 |
[4] |
Victor Kozyakin. Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 143-158. doi: 10.3934/dcdsb.2010.14.143 |
[5] |
Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355 |
[6] |
Xijun Hu, Li Wu. Decomposition of spectral flow and Bott-type iteration formula. Electronic Research Archive, 2020, 28 (1) : 127-148. doi: 10.3934/era.2020008 |
[7] |
Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845 |
[8] |
Jean-Michel Rakotoson. Generalized eigenvalue problem for totally discontinuous operators. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 343-373. doi: 10.3934/dcds.2010.28.343 |
[9] |
Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285 |
[10] |
Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259 |
[11] |
Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure and Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1 |
[12] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[13] |
Paul Loya and Jinsung Park. On gluing formulas for the spectral invariants of Dirac type operators. Electronic Research Announcements, 2005, 11: 1-11. |
[14] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[15] |
Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042 |
[16] |
Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277 |
[17] |
Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control and Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011 |
[18] |
Pablo Blanc. A lower bound for the principal eigenvalue of fully nonlinear elliptic operators. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3613-3623. doi: 10.3934/cpaa.2020158 |
[19] |
Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335 |
[20] |
Linghai Kong, Suhua Wei. A variational method for Abel inversion tomography with mixed Poisson-Laplace-Gaussian noise. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022007 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]