-
Previous Article
Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$
- CPAA Home
- This Issue
-
Next Article
Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction
A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth
1. | Dipartimento di Matematica Federigo Enriques, Università degli Studi di Milano, Italy |
$ \Delta^2 u + V(x)u = f(u)$ in $\mathbb{R}^4$
where $V$ is a continuous positive potential bounded away from zero and the nonlinearity $f(s)$ behaves like $e^{\alpha_0 s^2}$ at infinity for some $\alpha_0>0$.
In order to overcome the lack of compactness due to the unboundedness of the domain $\mathbb{R}^4$, we require some additional assumptions on $V$. In the case when the potential $V$ is large at infinity we obtain the existence of a nontrivial solution, while requiring the potential $V$ to be spherically symmetric we obtain the existence of a nontrivial radial solution. In both cases, the main difficulty is the loss of compactness due to the critical exponential growth of the nonlinear term $f$.
References:
[1] |
D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math., 128 (1988), 385-398.
doi: 10.2307/1971445. |
[2] |
Adimurthi, Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in $\mathbb{R}^{2}$, Proc. Indian Acad. Sci. Math. Sci., 99 (1989), 49-73.
doi: 10.1007/BF02874647. |
[3] |
Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413. |
[4] |
C. O. Alves and J. M. Do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth, Adv. Nonlinear Stud., 2 (2002), 437-458. |
[5] |
C. O. Alves, J. M. Do Ó and O. H. Miyagaki, Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents, Nonlinear Anal. Ser. A: Theory Methods, 46 (2001), 121-133.
doi: 10.1016/S0362-546X(99)00449-6. |
[6] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[7] |
T. Bartsch, M. Schneider and T. Weth, Multiple solutions of a critical polyharmonic equation, J. Reine Angew. Math., 571 (2004), 131-143.
doi: 10.1515/crll.2004.037. |
[8] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[9] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure. Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[10] |
J. Chabrowski and J. M. Do Ó, On some fourth-order semilinear elliptic problems in $\mathbb{R}^{N}$, Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 861-884.
doi: 10.1016/S0362-546X(01)00144-4. |
[11] |
D. G. Costa, On a class of elliptic systems in $R^N$, Electon. J. Differential Equations, 1994, No. 07, approx. 14 pp. (electronic). |
[12] |
D. G. De Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153. |
[13] |
J. M. Do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074. |
[14] |
D. E. Edmunds, D. Fortunato and E. Jannelli, Fourth-order nonlinear elliptic equations with critical growth, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 83 (1989), 115-119. |
[15] |
D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289.
doi: 10.1007/BF00381236. |
[16] |
E. H. Lieb and M. Loss, "Analysis," Second edition, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001. |
[17] |
G. Lu and Y. Yang, Adams' inequalities for bi-Laplacian and extremal functions in dimension four, Adv. Math., 220 (2009), 1135-1170.
doi: 10.1016/j.aim.2008.10.011. |
[18] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Math. J., 20 (1971), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[19] |
R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.
doi: 10.1007/BF01941322. |
[20] |
P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036. |
[21] |
P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl., 69 (1990), 55-83. |
[22] |
H. L. Royden, "Real Analysis," Third edition, Macmillan Publishing Company, New York, 1988. |
[23] |
B. Ruf, A sharp trudinger-moser type inequality for unbounded domains in $R^2$, J. Funct. Anal., 219 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[24] |
B. Ruf and F. Sani, Sharp Adams-type inequalities in $R^n$, Trans. Amer. Math. Soc., in press, http://dx.doi.org/10.1090/S0002-9947-2012-05561-9 |
[25] |
F. Sani, A biharmonic equation in $R^4$ involving nonlinearities with subcritical exponential growth, Adv. Nonlinear Stud., 11 (2011), 889-904. |
show all references
References:
[1] |
D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Annals of Math., 128 (1988), 385-398.
doi: 10.2307/1971445. |
[2] |
Adimurthi, Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in $\mathbb{R}^{2}$, Proc. Indian Acad. Sci. Math. Sci., 99 (1989), 49-73.
doi: 10.1007/BF02874647. |
[3] |
Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 393-413. |
[4] |
C. O. Alves and J. M. Do Ó, Positive solutions of a fourth-order semilinear problem involving critical growth, Adv. Nonlinear Stud., 2 (2002), 437-458. |
[5] |
C. O. Alves, J. M. Do Ó and O. H. Miyagaki, Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents, Nonlinear Anal. Ser. A: Theory Methods, 46 (2001), 121-133.
doi: 10.1016/S0362-546X(99)00449-6. |
[6] |
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[7] |
T. Bartsch, M. Schneider and T. Weth, Multiple solutions of a critical polyharmonic equation, J. Reine Angew. Math., 571 (2004), 131-143.
doi: 10.1515/crll.2004.037. |
[8] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555. |
[9] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure. Appl. Math., 36 (1983), 437-477.
doi: 10.1002/cpa.3160360405. |
[10] |
J. Chabrowski and J. M. Do Ó, On some fourth-order semilinear elliptic problems in $\mathbb{R}^{N}$, Nonlinear Anal. Ser. A: Theory Methods, 49 (2002), 861-884.
doi: 10.1016/S0362-546X(01)00144-4. |
[11] |
D. G. Costa, On a class of elliptic systems in $R^N$, Electon. J. Differential Equations, 1994, No. 07, approx. 14 pp. (electronic). |
[12] |
D. G. De Figueiredo, O. H. Miyagaki and B. Ruf, Elliptic equations in $R^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153. |
[13] |
J. M. Do Ó, E. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074. |
[14] |
D. E. Edmunds, D. Fortunato and E. Jannelli, Fourth-order nonlinear elliptic equations with critical growth, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 83 (1989), 115-119. |
[15] |
D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289.
doi: 10.1007/BF00381236. |
[16] |
E. H. Lieb and M. Loss, "Analysis," Second edition, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001. |
[17] |
G. Lu and Y. Yang, Adams' inequalities for bi-Laplacian and extremal functions in dimension four, Adv. Math., 220 (2009), 1135-1170.
doi: 10.1016/j.aim.2008.10.011. |
[18] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Math. J., 20 (1971), 1077-1092.
doi: 10.1512/iumj.1971.20.20101. |
[19] |
R. S. Palais, The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.
doi: 10.1007/BF01941322. |
[20] |
P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036. |
[21] |
P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl., 69 (1990), 55-83. |
[22] |
H. L. Royden, "Real Analysis," Third edition, Macmillan Publishing Company, New York, 1988. |
[23] |
B. Ruf, A sharp trudinger-moser type inequality for unbounded domains in $R^2$, J. Funct. Anal., 219 (2005), 340-367.
doi: 10.1016/j.jfa.2004.06.013. |
[24] |
B. Ruf and F. Sani, Sharp Adams-type inequalities in $R^n$, Trans. Amer. Math. Soc., in press, http://dx.doi.org/10.1090/S0002-9947-2012-05561-9 |
[25] |
F. Sani, A biharmonic equation in $R^4$ involving nonlinearities with subcritical exponential growth, Adv. Nonlinear Stud., 11 (2011), 889-904. |
[1] |
Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 |
[2] |
Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378 |
[3] |
Shengbing Deng, Xingliang Tian. On a nonhomogeneous Kirchhoff type elliptic system with the singular Trudinger-Moser growth. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022071 |
[4] |
Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455 |
[5] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1721-1735. doi: 10.3934/cpaa.2021038 |
[6] |
Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 781-813. doi: 10.3934/dcds.2021137 |
[7] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[8] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452 |
[9] |
Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 |
[10] |
Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047 |
[11] |
Yamin Wang. On nonexistence of extremals for the Trudinger-Moser functionals involving $ L^p $ norms. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4257-4268. doi: 10.3934/cpaa.2020191 |
[12] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[13] |
Zhongliang Wang. Nonradial positive solutions for a biharmonic critical growth problem. Communications on Pure and Applied Analysis, 2012, 11 (2) : 517-545. doi: 10.3934/cpaa.2012.11.517 |
[14] |
Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457 |
[15] |
Elvise Berchio, Filippo Gazzola. Positive solutions to a linearly perturbed critical growth biharmonic problem. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 809-823. doi: 10.3934/dcdss.2011.4.809 |
[16] |
O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185 |
[17] |
Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277 |
[18] |
Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155 |
[19] |
Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121 |
[20] |
Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]