$-\varepsilon^2\Delta u +V(x)u-\varepsilon^2\Delta (u^2)u=g(x,u) $
in $\mathbb{R}^N$, $N\geq 3$ and $g(x,u)$ is a superlinear but subcritical function. Applying variational methods we show the existence and multiplicity of solutions provided $\varepsilon$ is sufficiently small enough.
Citation: |
[1] |
A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal., 140 (1997), 285-300.doi: 10.1007/s002050050067. |
[2] |
M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinge equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.doi: 10.1016/j.na.2003.09.008. |
[3] |
Y. H. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, 29 (2007), 397-419.doi: 10.1007/s00526-006-0071-8. |
[4] |
Y. H. Ding and F. H. Lin, Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var. Partial Differential Equations, 30 (2007), 231-249.doi: 10.1007/s00526-007-0091-z. |
[5] |
Y. H. Ding and J. C. Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials, J. Func. Anal., 251 (2007), 546-572. |
[6] |
M. del Pino and P. Felmer, Multipeak bound states of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéare, 15 (1998), 127-149.doi: 10.1016/S0294-1449(97)89296-7. |
[7] |
M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.doi: 10.1007/s002080200327. |
[8] |
J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations: the critical exponential case, Nonlinear Anal., 67 (2007), 3357-3372.doi: 10.1016/j.na.2006.10.018. |
[9] |
J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var. Partial Differential Equations, 38 (2010), 275-315.doi: 10.1007/s00526-009-0286-6. |
[10] |
J. M. do Ó, A. Moameni and U. Severo, Semi-classical states for quasilinear Schrödinger equations arising in plasma physics}, Commun. Contemp. Math., 11 (2009), 547-83.doi: 10.1142/S021919970900348X. |
[11] |
J. M. do Ó, E. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $R^N$, J. Differential Equations, 246 (2009), 1363-1386. |
[12] |
J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.doi: 10.1016/j.jde.2009.11.030. |
[13] |
X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations , Adv. Diff. Eqs., 5 (2000), 899-928. |
[14] |
A. Floer and A. Weinstein, Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.doi: 10.1016/0022-1236(86)90096-0. |
[15] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéare, 1 (1984), 223-283. |
[16] |
J. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I, Proc. Amer. Math. Soc. 131 (2002), 441-448.doi: 10.1090/S0002-9939-02-06783-7. |
[17] |
J. Liu, Y. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differential Equations, 187 (2003), 473-493.doi: 10.1016/S0022-0396(02)00064-5. |
[18] |
J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004) 879-901.doi: 10.1081/PDE-120037335. |
[19] |
A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $R^N$, J. Differential Equations, 229 (2006), 570-587.doi: 10.1016/j.jde.2006.07.001. |
[20] |
Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_\alpha$, Comm. Part. Diff. Eqs., 13 (1988), 1499-1519. |
[21] |
Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131 (1990), 223-253.doi: 10.1007/BF02161413. |
[22] |
M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.doi: 10.1007/s005260100105. |
[23] |
P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Ang. Math. Phys., 43 (1992), 270-291.doi: 10.1007/BF00946631. |
[24] |
M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators," Academic Press, 1978. |
[25] |
B. Sirakov, Standing wave solutions of the nonlinear Schrödinger equations in $R^N$, Annali di Matematica, 183 (2002), 73-83. |
[26] |
E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.doi: 10.1007/s00526-009-0299-1. |
[27] |
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.doi: 10.1007/BF02096642. |