\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$

Abstract Related Papers Cited by
  • In this paper we consider the following modified version of nonlinear Schrödinger equation:

    $-\varepsilon^2\Delta u +V(x)u-\varepsilon^2\Delta (u^2)u=g(x,u) $

    in $\mathbb{R}^N$, $N\geq 3$ and $g(x,u)$ is a superlinear but subcritical function. Applying variational methods we show the existence and multiplicity of solutions provided $\varepsilon$ is sufficiently small enough.

    Mathematics Subject Classification: Primary: 35J20, 35J60, 35Q55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal., 140 (1997), 285-300.doi: 10.1007/s002050050067.

    [2]

    M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinge equation: a dual approach, Nonlinear Anal., 56 (2004), 213-226.doi: 10.1016/j.na.2003.09.008.

    [3]

    Y. H. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differential Equations, 29 (2007), 397-419.doi: 10.1007/s00526-006-0071-8.

    [4]

    Y. H. Ding and F. H. Lin, Solutions of perturbed Schrödinger equations with critical nonlinearity, Calc. Var. Partial Differential Equations, 30 (2007), 231-249.doi: 10.1007/s00526-007-0091-z.

    [5]

    Y. H. Ding and J. C. Wei, Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials, J. Func. Anal., 251 (2007), 546-572.

    [6]

    M. del Pino and P. Felmer, Multipeak bound states of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéare, 15 (1998), 127-149.doi: 10.1016/S0294-1449(97)89296-7.

    [7]

    M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324 (2002), 1-32.doi: 10.1007/s002080200327.

    [8]

    J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations: the critical exponential case, Nonlinear Anal., 67 (2007), 3357-3372.doi: 10.1016/j.na.2006.10.018.

    [9]

    J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var. Partial Differential Equations, 38 (2010), 275-315.doi: 10.1007/s00526-009-0286-6.

    [10]

    J. M. do Ó, A. Moameni and U. Severo, Semi-classical states for quasilinear Schrödinger equations arising in plasma physics}, Commun. Contemp. Math., 11 (2009), 547-83.doi: 10.1142/S021919970900348X.

    [11]

    J. M. do Ó, E. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $R^N$, J. Differential Equations, 246 (2009), 1363-1386.

    [12]

    J. M. do Ó, O. Miyagaki and S. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744.doi: 10.1016/j.jde.2009.11.030.

    [13]

    X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations , Adv. Diff. Eqs., 5 (2000), 899-928.

    [14]

    A. Floer and A. Weinstein, Nonspreading wave pachets for the packets for the cubic Schrödinger with a bounded potential, J. Funct. Anal., 69 (1986), 397-408.doi: 10.1016/0022-1236(86)90096-0.

    [15]

    P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéare, 1 (1984), 223-283.

    [16]

    J. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations I, Proc. Amer. Math. Soc. 131 (2002), 441-448.doi: 10.1090/S0002-9939-02-06783-7.

    [17]

    J. Liu, Y. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations II, J. Differential Equations, 187 (2003), 473-493.doi: 10.1016/S0022-0396(02)00064-5.

    [18]

    J. Liu, Y. Wang and Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004) 879-901.doi: 10.1081/PDE-120037335.

    [19]

    A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in $R^N$, J. Differential Equations, 229 (2006), 570-587.doi: 10.1016/j.jde.2006.07.001.

    [20]

    Y. G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class $(V)_\alpha$, Comm. Part. Diff. Eqs., 13 (1988), 1499-1519.

    [21]

    Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131 (1990), 223-253.doi: 10.1007/BF02161413.

    [22]

    M. Poppenberg, K. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.doi: 10.1007/s005260100105.

    [23]

    P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Ang. Math. Phys., 43 (1992), 270-291.doi: 10.1007/BF00946631.

    [24]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators," Academic Press, 1978.

    [25]

    B. Sirakov, Standing wave solutions of the nonlinear Schrödinger equations in $R^N$, Annali di Matematica, 183 (2002), 73-83.

    [26]

    E. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.doi: 10.1007/s00526-009-0299-1.

    [27]

    X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.doi: 10.1007/BF02096642.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return