• Previous Article
    Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$
  • CPAA Home
  • This Issue
  • Next Article
    Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$
January  2013, 12(1): 451-459. doi: 10.3934/cpaa.2013.12.451

Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros

1. 

Institute for Advanced Study, Shenzhen University, Shenzhen Guangdong, 518060, China

Received  May 2011 Revised  December 2011 Published  September 2012

We study the multiplicity solutions for the nonlinear elliptic equation

$ -\mathcal{M}_{\lambda,\Lambda}^+ (D^2u)=f(u) $ in $\Omega$,

$ u=0 $ on $\partial \Omega$

and a more general fully nonlinear elliptic equation

$ F(D^2u)=f(u) $ in $\Omega$,

$ u=0 $ on $\partial \Omega$,

where $\Omega$ is a bounded domain in $\mathbb{R}^N, N\geq 3$, $f$ is a locally Lipschitz continuous function with superlinear growth at infinity. We will show that the equation has at least two positive solutions under some assumptions.

Citation: Xiaohui Yu. Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Communications on Pure & Applied Analysis, 2013, 12 (1) : 451-459. doi: 10.3934/cpaa.2013.12.451
References:
[1]

A. Allendes and A. Quaas, Multiplicity results for extremal operators through bifurcation,, Discrete Continuous Dynamical Systems, 29 (2011), 51.   Google Scholar

[2]

S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities,, to appear in Annali della Scuola Normale Superiore di Pisa, ().   Google Scholar

[3]

S. N. Armstrong, B. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations,, preprint, ().   Google Scholar

[4]

J. Busca, M. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Puccis operator,, Ann. Inst. Henri Poincare, 22 (2005), 187.  doi: 10.1016/j.anihpc.2004.05.004.  Google Scholar

[5]

L. Caffarelli and X. Cabre, "Fully Nonlinear Elliptic Equations,", Colloquium Publication 43, 43 (1995).   Google Scholar

[6]

A. Cutri and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. Henri. Poincare, 17 (2000), 219.  doi: 10.1016/S0294-1449(00)00109-8.  Google Scholar

[7]

D. G de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41.   Google Scholar

[8]

P. Felmer, A. Quaas and B. Sirakov, Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations,, Journal of Functional Analysis, 258 (2010), 4154.  doi: 10.1016/j.jfa.2010.03.012.  Google Scholar

[9]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[10]

B. Gidas and J. Spruck, A priori bounds of positive solutions of nonlinear elliptic equations,, Comm. in P.D.E, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[11]

L. Iturriaga, E. Massa, J. Sanchez and P. Ubilla, Positive solutions for the p-Laplacian with a nonlinear term with zeros,, J. Differential Equations, 248 (2010), 309.  doi: 10.1016/j.jde.2009.08.008.  Google Scholar

[12]

L. Iturriaga, S. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros,, Ann. Inst. Henri. Poincare, 27 (2010), 763.  doi: 10.1016/j.anihpc.2009.11.003.  Google Scholar

[13]

A. Krasnoselskii, "Positive Solutions of Operator Equations,", P. Noordhiff, (1964).   Google Scholar

[14]

P. L. Lions, On the existence of positive solutions of semilinear elliptic equations,, SIAM Rev., 24 (1982), 441.   Google Scholar

[15]

A. Quaas, Existence of a positive solution to a "semilinear" equation involving Pucci's operator in a convex domain,, Diff. Int. Eq., 17 (2004), 481.   Google Scholar

[16]

A. Quaas and B. Sirakov, Existence results for nonproper elliptic equation involving the Pucci operator,, Comm. in P.D.E. 31 (2006), 31 (2006), 987.  doi: 10.1080/03605300500394421.  Google Scholar

[17]

A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators,, Advances in Mathematics, 218 (2008), 105.  doi: 10.1016/j.aim.2007.12.002.  Google Scholar

[18]

B. Sirakov, Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon,, preprint., ().   Google Scholar

show all references

References:
[1]

A. Allendes and A. Quaas, Multiplicity results for extremal operators through bifurcation,, Discrete Continuous Dynamical Systems, 29 (2011), 51.   Google Scholar

[2]

S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities,, to appear in Annali della Scuola Normale Superiore di Pisa, ().   Google Scholar

[3]

S. N. Armstrong, B. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations,, preprint, ().   Google Scholar

[4]

J. Busca, M. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Puccis operator,, Ann. Inst. Henri Poincare, 22 (2005), 187.  doi: 10.1016/j.anihpc.2004.05.004.  Google Scholar

[5]

L. Caffarelli and X. Cabre, "Fully Nonlinear Elliptic Equations,", Colloquium Publication 43, 43 (1995).   Google Scholar

[6]

A. Cutri and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. Henri. Poincare, 17 (2000), 219.  doi: 10.1016/S0294-1449(00)00109-8.  Google Scholar

[7]

D. G de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41.   Google Scholar

[8]

P. Felmer, A. Quaas and B. Sirakov, Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations,, Journal of Functional Analysis, 258 (2010), 4154.  doi: 10.1016/j.jfa.2010.03.012.  Google Scholar

[9]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[10]

B. Gidas and J. Spruck, A priori bounds of positive solutions of nonlinear elliptic equations,, Comm. in P.D.E, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[11]

L. Iturriaga, E. Massa, J. Sanchez and P. Ubilla, Positive solutions for the p-Laplacian with a nonlinear term with zeros,, J. Differential Equations, 248 (2010), 309.  doi: 10.1016/j.jde.2009.08.008.  Google Scholar

[12]

L. Iturriaga, S. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros,, Ann. Inst. Henri. Poincare, 27 (2010), 763.  doi: 10.1016/j.anihpc.2009.11.003.  Google Scholar

[13]

A. Krasnoselskii, "Positive Solutions of Operator Equations,", P. Noordhiff, (1964).   Google Scholar

[14]

P. L. Lions, On the existence of positive solutions of semilinear elliptic equations,, SIAM Rev., 24 (1982), 441.   Google Scholar

[15]

A. Quaas, Existence of a positive solution to a "semilinear" equation involving Pucci's operator in a convex domain,, Diff. Int. Eq., 17 (2004), 481.   Google Scholar

[16]

A. Quaas and B. Sirakov, Existence results for nonproper elliptic equation involving the Pucci operator,, Comm. in P.D.E. 31 (2006), 31 (2006), 987.  doi: 10.1080/03605300500394421.  Google Scholar

[17]

A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators,, Advances in Mathematics, 218 (2008), 105.  doi: 10.1016/j.aim.2007.12.002.  Google Scholar

[18]

B. Sirakov, Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon,, preprint., ().   Google Scholar

[1]

Shahar Nevo, Xuecheng Pang and Lawrence Zalcman. Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros. Electronic Research Announcements, 2006, 12: 37-43.

[2]

Isabel Flores, Matteo Franca, Leonelo Iturriaga. Positive radial solutions involving nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2555-2579. doi: 10.3934/dcds.2019107

[3]

Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91

[4]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[5]

Guowei Dai. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5323-5345. doi: 10.3934/dcds.2016034

[6]

Michael A. Karls. Zeros of solutions of $\Delta u + f(u) = 0$ in the supercritical case. Conference Publications, 1998, 1998 (Special) : 360-370. doi: 10.3934/proc.1998.1998.360

[7]

Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166

[8]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[9]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[10]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[11]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[12]

Vincenzo Ambrosio. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 781-815. doi: 10.3934/dcds.2020062

[13]

Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics & Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019

[14]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[15]

Michał Kowalczyk, Yong Liu, Frank Pacard. Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks & Heterogeneous Media, 2012, 7 (4) : 837-855. doi: 10.3934/nhm.2012.7.837

[16]

Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020012

[17]

Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic & Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589

[18]

Francisco Odair de Paiva. Multiple solutions for a class of quasilinear problems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 669-680. doi: 10.3934/dcds.2006.15.669

[19]

Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110

[20]

Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]