• Previous Article
    Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$
  • CPAA Home
  • This Issue
  • Next Article
    Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$
January  2013, 12(1): 451-459. doi: 10.3934/cpaa.2013.12.451

Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros

1. 

Institute for Advanced Study, Shenzhen University, Shenzhen Guangdong, 518060, China

Received  May 2011 Revised  December 2011 Published  September 2012

We study the multiplicity solutions for the nonlinear elliptic equation

$ -\mathcal{M}_{\lambda,\Lambda}^+ (D^2u)=f(u) $ in $\Omega$,

$ u=0 $ on $\partial \Omega$

and a more general fully nonlinear elliptic equation

$ F(D^2u)=f(u) $ in $\Omega$,

$ u=0 $ on $\partial \Omega$,

where $\Omega$ is a bounded domain in $\mathbb{R}^N, N\geq 3$, $f$ is a locally Lipschitz continuous function with superlinear growth at infinity. We will show that the equation has at least two positive solutions under some assumptions.

Citation: Xiaohui Yu. Multiplicity solutions for fully nonlinear equation involving nonlinearity with zeros. Communications on Pure & Applied Analysis, 2013, 12 (1) : 451-459. doi: 10.3934/cpaa.2013.12.451
References:
[1]

A. Allendes and A. Quaas, Multiplicity results for extremal operators through bifurcation,, Discrete Continuous Dynamical Systems, 29 (2011), 51.   Google Scholar

[2]

S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities,, to appear in Annali della Scuola Normale Superiore di Pisa, ().   Google Scholar

[3]

S. N. Armstrong, B. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations,, preprint, ().   Google Scholar

[4]

J. Busca, M. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Puccis operator,, Ann. Inst. Henri Poincare, 22 (2005), 187.  doi: 10.1016/j.anihpc.2004.05.004.  Google Scholar

[5]

L. Caffarelli and X. Cabre, "Fully Nonlinear Elliptic Equations,", Colloquium Publication 43, 43 (1995).   Google Scholar

[6]

A. Cutri and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. Henri. Poincare, 17 (2000), 219.  doi: 10.1016/S0294-1449(00)00109-8.  Google Scholar

[7]

D. G de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41.   Google Scholar

[8]

P. Felmer, A. Quaas and B. Sirakov, Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations,, Journal of Functional Analysis, 258 (2010), 4154.  doi: 10.1016/j.jfa.2010.03.012.  Google Scholar

[9]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[10]

B. Gidas and J. Spruck, A priori bounds of positive solutions of nonlinear elliptic equations,, Comm. in P.D.E, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[11]

L. Iturriaga, E. Massa, J. Sanchez and P. Ubilla, Positive solutions for the p-Laplacian with a nonlinear term with zeros,, J. Differential Equations, 248 (2010), 309.  doi: 10.1016/j.jde.2009.08.008.  Google Scholar

[12]

L. Iturriaga, S. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros,, Ann. Inst. Henri. Poincare, 27 (2010), 763.  doi: 10.1016/j.anihpc.2009.11.003.  Google Scholar

[13]

A. Krasnoselskii, "Positive Solutions of Operator Equations,", P. Noordhiff, (1964).   Google Scholar

[14]

P. L. Lions, On the existence of positive solutions of semilinear elliptic equations,, SIAM Rev., 24 (1982), 441.   Google Scholar

[15]

A. Quaas, Existence of a positive solution to a "semilinear" equation involving Pucci's operator in a convex domain,, Diff. Int. Eq., 17 (2004), 481.   Google Scholar

[16]

A. Quaas and B. Sirakov, Existence results for nonproper elliptic equation involving the Pucci operator,, Comm. in P.D.E. 31 (2006), 31 (2006), 987.  doi: 10.1080/03605300500394421.  Google Scholar

[17]

A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators,, Advances in Mathematics, 218 (2008), 105.  doi: 10.1016/j.aim.2007.12.002.  Google Scholar

[18]

B. Sirakov, Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon,, preprint., ().   Google Scholar

show all references

References:
[1]

A. Allendes and A. Quaas, Multiplicity results for extremal operators through bifurcation,, Discrete Continuous Dynamical Systems, 29 (2011), 51.   Google Scholar

[2]

S. N. Armstrong and B. Sirakov, Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities,, to appear in Annali della Scuola Normale Superiore di Pisa, ().   Google Scholar

[3]

S. N. Armstrong, B. Sirakov and C. K. Smart, Fundamental solutions of homogeneous fully nonlinear elliptic equations,, preprint, ().   Google Scholar

[4]

J. Busca, M. Esteban and A. Quaas, Nonlinear eigenvalues and bifurcation problems for Puccis operator,, Ann. Inst. Henri Poincare, 22 (2005), 187.  doi: 10.1016/j.anihpc.2004.05.004.  Google Scholar

[5]

L. Caffarelli and X. Cabre, "Fully Nonlinear Elliptic Equations,", Colloquium Publication 43, 43 (1995).   Google Scholar

[6]

A. Cutri and F. Leoni, On the Liouville property for fully nonlinear equations,, Ann. Inst. Henri. Poincare, 17 (2000), 219.  doi: 10.1016/S0294-1449(00)00109-8.  Google Scholar

[7]

D. G de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equation,, J. Math. Pures. Appl., 61 (1982), 41.   Google Scholar

[8]

P. Felmer, A. Quaas and B. Sirakov, Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations,, Journal of Functional Analysis, 258 (2010), 4154.  doi: 10.1016/j.jfa.2010.03.012.  Google Scholar

[9]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998).   Google Scholar

[10]

B. Gidas and J. Spruck, A priori bounds of positive solutions of nonlinear elliptic equations,, Comm. in P.D.E, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[11]

L. Iturriaga, E. Massa, J. Sanchez and P. Ubilla, Positive solutions for the p-Laplacian with a nonlinear term with zeros,, J. Differential Equations, 248 (2010), 309.  doi: 10.1016/j.jde.2009.08.008.  Google Scholar

[12]

L. Iturriaga, S. Lorca and E. Massa, Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros,, Ann. Inst. Henri. Poincare, 27 (2010), 763.  doi: 10.1016/j.anihpc.2009.11.003.  Google Scholar

[13]

A. Krasnoselskii, "Positive Solutions of Operator Equations,", P. Noordhiff, (1964).   Google Scholar

[14]

P. L. Lions, On the existence of positive solutions of semilinear elliptic equations,, SIAM Rev., 24 (1982), 441.   Google Scholar

[15]

A. Quaas, Existence of a positive solution to a "semilinear" equation involving Pucci's operator in a convex domain,, Diff. Int. Eq., 17 (2004), 481.   Google Scholar

[16]

A. Quaas and B. Sirakov, Existence results for nonproper elliptic equation involving the Pucci operator,, Comm. in P.D.E. 31 (2006), 31 (2006), 987.  doi: 10.1080/03605300500394421.  Google Scholar

[17]

A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators,, Advances in Mathematics, 218 (2008), 105.  doi: 10.1016/j.aim.2007.12.002.  Google Scholar

[18]

B. Sirakov, Non uniqueness for the Dirichlet problem for fully nonlinear elliptic operators and the Ambrosetti-Prodi phenomenon,, preprint., ().   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[6]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[7]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[8]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[9]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[10]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[11]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[12]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[15]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[16]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[17]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[18]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[19]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[20]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]