January  2013, 12(1): 481-501. doi: 10.3934/cpaa.2013.12.481

The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China, China

2. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187

Received  November 2010 Revised  April 2012 Published  September 2012

A delayed diffusive predator-prey system with Holling type-II predator functional response subject to Neumann boundary conditions is considered here. The stability/instability of nonnegative equilibria and associated Hopf bifurcation are investigated by analyzing the characteristic equations. By the theory of normal form and center manifold, an explicit formula for determining the stability and direction of periodic solution bifurcating from Hopf bifurcation is derived.
Citation: Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481
References:
[1]

S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system,, Int. J. Bifurcation Chaos., 22 (2012).  doi: 10.1142/S0218127412500617.  Google Scholar

[2]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays,, Trans. Amer. Math. Soc., 352 (2000), 2217.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[3]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[4]

T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation,, J. Differential Equations., 122 (1995), 181.  doi: 10.1006/jdeq.1995.1144.  Google Scholar

[5]

T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity,, J. Differential Equations., 122 (1995), 201.  doi: 10.1006/jdeq.1995.1145.  Google Scholar

[6]

B. C. Goodwin, "Temporal Organzization in Cells,", Academic Press, (1963).   Google Scholar

[7]

J. K. Hale, "Theory of Functinal Differentail Equations,", Second edition. Applied Mathematical Sciences, (1977).   Google Scholar

[8]

B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge University Press, (1981).   Google Scholar

[9]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canadian Entomologist, 91 (1959), 385.   Google Scholar

[10]

G. Hu and W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects,, Nonl. Anal. Real World Appl., 11 (2010), 819.  doi: 10.1016/j.nonrwa.2009.01.027.  Google Scholar

[11]

G. E. Hutchinson, Circular causal systems in ecology,, Ann. N.Y. Acad. Sci., 50 (1948), 221.   Google Scholar

[12]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a prey refuge,, J. Differential Equations., 231 (2006), 534.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[13]

X. Lin, J. W.-H. So and J. Wu, Center manifolds for partial differential equations with delay,, Proc. Roy. Soc. Edinburgh., 122 A (1992), 237.  doi: 10.1017/S0308210500021090.  Google Scholar

[14]

R. M. May, Limit cycles in predator-prey communities,, Science, 177 (1972), 900.   Google Scholar

[15]

A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics,, SIAM Rev., 44 (2002), 900.  doi: 10.1137/S0036144502404442.  Google Scholar

[16]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differential Equations., 247 (2009), 866.  doi: 10.1016/j.jde.2009.03.008.  Google Scholar

[17]

M. L. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interaction,, Amer. Natur., 97 (1963), 209.   Google Scholar

[18]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863.   Google Scholar

[19]

H. Thieme and X. Zhao, A non-local delayed and diffusive predator-prey model,, Nonl. Anal. Real World Appl., 2 (2001), 145.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[20]

P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system,, J. Appl. Mech. Ser., E 30 (1963), 500.  doi: 10.1115/1.3636609.  Google Scholar

[21]

Y. Wang, Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays,, J. Math. Anal. Appl., 328 (2007), 137.  doi: 10.1016/j.jmaa.2006.05.02.  Google Scholar

[22]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, (1996).   Google Scholar

[23]

D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,, J. Differential Equations., 2001 (2009), 494.  doi: 10.1006/jdeq.2000.3982.  Google Scholar

[24]

X. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects,, Appl. Math. Comput., 192 (2007), 137.  doi: 10.1016/j.amc.2007.03.033.  Google Scholar

[25]

X. Yan and C. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Applied Mathematical Modelling, 34 (2010), 184.  doi: 10.1016/j.apm.2009.03.040.  Google Scholar

[26]

F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[27]

J. Zhang, W. Li and X. Yan, Multiple bifurcations in a delayed predator-prey diffusion system with a functional response,, Nonl. Anal. Real World Appl., 11 (2010), 2708.  doi: 10.1016/j.nonrwa.2009.09.019.  Google Scholar

show all references

References:
[1]

S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system,, Int. J. Bifurcation Chaos., 22 (2012).  doi: 10.1142/S0218127412500617.  Google Scholar

[2]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays,, Trans. Amer. Math. Soc., 352 (2000), 2217.  doi: 10.1090/S0002-9947-00-02280-7.  Google Scholar

[3]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.  doi: 10.1006/jmaa.2000.7182.  Google Scholar

[4]

T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation,, J. Differential Equations., 122 (1995), 181.  doi: 10.1006/jdeq.1995.1144.  Google Scholar

[5]

T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity,, J. Differential Equations., 122 (1995), 201.  doi: 10.1006/jdeq.1995.1145.  Google Scholar

[6]

B. C. Goodwin, "Temporal Organzization in Cells,", Academic Press, (1963).   Google Scholar

[7]

J. K. Hale, "Theory of Functinal Differentail Equations,", Second edition. Applied Mathematical Sciences, (1977).   Google Scholar

[8]

B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge University Press, (1981).   Google Scholar

[9]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canadian Entomologist, 91 (1959), 385.   Google Scholar

[10]

G. Hu and W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects,, Nonl. Anal. Real World Appl., 11 (2010), 819.  doi: 10.1016/j.nonrwa.2009.01.027.  Google Scholar

[11]

G. E. Hutchinson, Circular causal systems in ecology,, Ann. N.Y. Acad. Sci., 50 (1948), 221.   Google Scholar

[12]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a prey refuge,, J. Differential Equations., 231 (2006), 534.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[13]

X. Lin, J. W.-H. So and J. Wu, Center manifolds for partial differential equations with delay,, Proc. Roy. Soc. Edinburgh., 122 A (1992), 237.  doi: 10.1017/S0308210500021090.  Google Scholar

[14]

R. M. May, Limit cycles in predator-prey communities,, Science, 177 (1972), 900.   Google Scholar

[15]

A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics,, SIAM Rev., 44 (2002), 900.  doi: 10.1137/S0036144502404442.  Google Scholar

[16]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differential Equations., 247 (2009), 866.  doi: 10.1016/j.jde.2009.03.008.  Google Scholar

[17]

M. L. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interaction,, Amer. Natur., 97 (1963), 209.   Google Scholar

[18]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863.   Google Scholar

[19]

H. Thieme and X. Zhao, A non-local delayed and diffusive predator-prey model,, Nonl. Anal. Real World Appl., 2 (2001), 145.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[20]

P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system,, J. Appl. Mech. Ser., E 30 (1963), 500.  doi: 10.1115/1.3636609.  Google Scholar

[21]

Y. Wang, Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays,, J. Math. Anal. Appl., 328 (2007), 137.  doi: 10.1016/j.jmaa.2006.05.02.  Google Scholar

[22]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, (1996).   Google Scholar

[23]

D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,, J. Differential Equations., 2001 (2009), 494.  doi: 10.1006/jdeq.2000.3982.  Google Scholar

[24]

X. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects,, Appl. Math. Comput., 192 (2007), 137.  doi: 10.1016/j.amc.2007.03.033.  Google Scholar

[25]

X. Yan and C. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Applied Mathematical Modelling, 34 (2010), 184.  doi: 10.1016/j.apm.2009.03.040.  Google Scholar

[26]

F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[27]

J. Zhang, W. Li and X. Yan, Multiple bifurcations in a delayed predator-prey diffusion system with a functional response,, Nonl. Anal. Real World Appl., 11 (2010), 2708.  doi: 10.1016/j.nonrwa.2009.09.019.  Google Scholar

[1]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[2]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[3]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[4]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[5]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[8]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[9]

Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[12]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[13]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[14]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[17]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[18]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[19]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[20]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]