January  2013, 12(1): 481-501. doi: 10.3934/cpaa.2013.12.481

The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China, China

2. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187

Received  November 2010 Revised  April 2012 Published  September 2012

A delayed diffusive predator-prey system with Holling type-II predator functional response subject to Neumann boundary conditions is considered here. The stability/instability of nonnegative equilibria and associated Hopf bifurcation are investigated by analyzing the characteristic equations. By the theory of normal form and center manifold, an explicit formula for determining the stability and direction of periodic solution bifurcating from Hopf bifurcation is derived.
Citation: Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481
References:
[1]

S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system,, Int. J. Bifurcation Chaos., 22 (2012). doi: 10.1142/S0218127412500617. Google Scholar

[2]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays,, Trans. Amer. Math. Soc., 352 (2000), 2217. doi: 10.1090/S0002-9947-00-02280-7. Google Scholar

[3]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433. doi: 10.1006/jmaa.2000.7182. Google Scholar

[4]

T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation,, J. Differential Equations., 122 (1995), 181. doi: 10.1006/jdeq.1995.1144. Google Scholar

[5]

T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity,, J. Differential Equations., 122 (1995), 201. doi: 10.1006/jdeq.1995.1145. Google Scholar

[6]

B. C. Goodwin, "Temporal Organzization in Cells,", Academic Press, (1963). Google Scholar

[7]

J. K. Hale, "Theory of Functinal Differentail Equations,", Second edition. Applied Mathematical Sciences, (1977). Google Scholar

[8]

B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge University Press, (1981). Google Scholar

[9]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canadian Entomologist, 91 (1959), 385. Google Scholar

[10]

G. Hu and W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects,, Nonl. Anal. Real World Appl., 11 (2010), 819. doi: 10.1016/j.nonrwa.2009.01.027. Google Scholar

[11]

G. E. Hutchinson, Circular causal systems in ecology,, Ann. N.Y. Acad. Sci., 50 (1948), 221. Google Scholar

[12]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a prey refuge,, J. Differential Equations., 231 (2006), 534. doi: 10.1016/j.jde.2006.08.001. Google Scholar

[13]

X. Lin, J. W.-H. So and J. Wu, Center manifolds for partial differential equations with delay,, Proc. Roy. Soc. Edinburgh., 122 A (1992), 237. doi: 10.1017/S0308210500021090. Google Scholar

[14]

R. M. May, Limit cycles in predator-prey communities,, Science, 177 (1972), 900. Google Scholar

[15]

A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics,, SIAM Rev., 44 (2002), 900. doi: 10.1137/S0036144502404442. Google Scholar

[16]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differential Equations., 247 (2009), 866. doi: 10.1016/j.jde.2009.03.008. Google Scholar

[17]

M. L. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interaction,, Amer. Natur., 97 (1963), 209. Google Scholar

[18]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863. Google Scholar

[19]

H. Thieme and X. Zhao, A non-local delayed and diffusive predator-prey model,, Nonl. Anal. Real World Appl., 2 (2001), 145. doi: 10.1016/S0362-546X(00)00112-7. Google Scholar

[20]

P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system,, J. Appl. Mech. Ser., E 30 (1963), 500. doi: 10.1115/1.3636609. Google Scholar

[21]

Y. Wang, Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays,, J. Math. Anal. Appl., 328 (2007), 137. doi: 10.1016/j.jmaa.2006.05.02. Google Scholar

[22]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, (1996). Google Scholar

[23]

D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,, J. Differential Equations., 2001 (2009), 494. doi: 10.1006/jdeq.2000.3982. Google Scholar

[24]

X. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects,, Appl. Math. Comput., 192 (2007), 137. doi: 10.1016/j.amc.2007.03.033. Google Scholar

[25]

X. Yan and C. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Applied Mathematical Modelling, 34 (2010), 184. doi: 10.1016/j.apm.2009.03.040. Google Scholar

[26]

F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944. doi: 10.1016/j.jde.2008.10.024. Google Scholar

[27]

J. Zhang, W. Li and X. Yan, Multiple bifurcations in a delayed predator-prey diffusion system with a functional response,, Nonl. Anal. Real World Appl., 11 (2010), 2708. doi: 10.1016/j.nonrwa.2009.09.019. Google Scholar

show all references

References:
[1]

S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system,, Int. J. Bifurcation Chaos., 22 (2012). doi: 10.1142/S0218127412500617. Google Scholar

[2]

T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays,, Trans. Amer. Math. Soc., 352 (2000), 2217. doi: 10.1090/S0002-9947-00-02280-7. Google Scholar

[3]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433. doi: 10.1006/jmaa.2000.7182. Google Scholar

[4]

T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation,, J. Differential Equations., 122 (1995), 181. doi: 10.1006/jdeq.1995.1144. Google Scholar

[5]

T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity,, J. Differential Equations., 122 (1995), 201. doi: 10.1006/jdeq.1995.1145. Google Scholar

[6]

B. C. Goodwin, "Temporal Organzization in Cells,", Academic Press, (1963). Google Scholar

[7]

J. K. Hale, "Theory of Functinal Differentail Equations,", Second edition. Applied Mathematical Sciences, (1977). Google Scholar

[8]

B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge University Press, (1981). Google Scholar

[9]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canadian Entomologist, 91 (1959), 385. Google Scholar

[10]

G. Hu and W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects,, Nonl. Anal. Real World Appl., 11 (2010), 819. doi: 10.1016/j.nonrwa.2009.01.027. Google Scholar

[11]

G. E. Hutchinson, Circular causal systems in ecology,, Ann. N.Y. Acad. Sci., 50 (1948), 221. Google Scholar

[12]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a prey refuge,, J. Differential Equations., 231 (2006), 534. doi: 10.1016/j.jde.2006.08.001. Google Scholar

[13]

X. Lin, J. W.-H. So and J. Wu, Center manifolds for partial differential equations with delay,, Proc. Roy. Soc. Edinburgh., 122 A (1992), 237. doi: 10.1017/S0308210500021090. Google Scholar

[14]

R. M. May, Limit cycles in predator-prey communities,, Science, 177 (1972), 900. Google Scholar

[15]

A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics,, SIAM Rev., 44 (2002), 900. doi: 10.1137/S0036144502404442. Google Scholar

[16]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differential Equations., 247 (2009), 866. doi: 10.1016/j.jde.2009.03.008. Google Scholar

[17]

M. L. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interaction,, Amer. Natur., 97 (1963), 209. Google Scholar

[18]

S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863. Google Scholar

[19]

H. Thieme and X. Zhao, A non-local delayed and diffusive predator-prey model,, Nonl. Anal. Real World Appl., 2 (2001), 145. doi: 10.1016/S0362-546X(00)00112-7. Google Scholar

[20]

P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system,, J. Appl. Mech. Ser., E 30 (1963), 500. doi: 10.1115/1.3636609. Google Scholar

[21]

Y. Wang, Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays,, J. Math. Anal. Appl., 328 (2007), 137. doi: 10.1016/j.jmaa.2006.05.02. Google Scholar

[22]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, (1996). Google Scholar

[23]

D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,, J. Differential Equations., 2001 (2009), 494. doi: 10.1006/jdeq.2000.3982. Google Scholar

[24]

X. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects,, Appl. Math. Comput., 192 (2007), 137. doi: 10.1016/j.amc.2007.03.033. Google Scholar

[25]

X. Yan and C. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Applied Mathematical Modelling, 34 (2010), 184. doi: 10.1016/j.apm.2009.03.040. Google Scholar

[26]

F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944. doi: 10.1016/j.jde.2008.10.024. Google Scholar

[27]

J. Zhang, W. Li and X. Yan, Multiple bifurcations in a delayed predator-prey diffusion system with a functional response,, Nonl. Anal. Real World Appl., 11 (2010), 2708. doi: 10.1016/j.nonrwa.2009.09.019. Google Scholar

[1]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[2]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[3]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[4]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[5]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[6]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[7]

Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021

[8]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[9]

Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321

[10]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[11]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[12]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

[13]

Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

[14]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[15]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[16]

Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

[17]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[18]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

[19]

C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289

[20]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]