-
Previous Article
Incompressible type euler as scaling limit of compressible Euler-Maxwell equations
- CPAA Home
- This Issue
-
Next Article
Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$
The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response
1. | Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China, China |
2. | Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187 |
References:
[1] |
S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system,, Int. J. Bifurcation Chaos., 22 (2012).
doi: 10.1142/S0218127412500617. |
[2] |
T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays,, Trans. Amer. Math. Soc., 352 (2000), 2217.
doi: 10.1090/S0002-9947-00-02280-7. |
[3] |
T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.
doi: 10.1006/jmaa.2000.7182. |
[4] |
T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation,, J. Differential Equations., 122 (1995), 181.
doi: 10.1006/jdeq.1995.1144. |
[5] |
T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity,, J. Differential Equations., 122 (1995), 201.
doi: 10.1006/jdeq.1995.1145. |
[6] |
B. C. Goodwin, "Temporal Organzization in Cells,", Academic Press, (1963). Google Scholar |
[7] |
J. K. Hale, "Theory of Functinal Differentail Equations,", Second edition. Applied Mathematical Sciences, (1977).
|
[8] |
B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge University Press, (1981).
|
[9] |
C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canadian Entomologist, 91 (1959), 385. Google Scholar |
[10] |
G. Hu and W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects,, Nonl. Anal. Real World Appl., 11 (2010), 819.
doi: 10.1016/j.nonrwa.2009.01.027. |
[11] |
G. E. Hutchinson, Circular causal systems in ecology,, Ann. N.Y. Acad. Sci., 50 (1948), 221. Google Scholar |
[12] |
W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a prey refuge,, J. Differential Equations., 231 (2006), 534.
doi: 10.1016/j.jde.2006.08.001. |
[13] |
X. Lin, J. W.-H. So and J. Wu, Center manifolds for partial differential equations with delay,, Proc. Roy. Soc. Edinburgh., 122 A (1992), 237.
doi: 10.1017/S0308210500021090. |
[14] |
R. M. May, Limit cycles in predator-prey communities,, Science, 177 (1972), 900. Google Scholar |
[15] |
A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics,, SIAM Rev., 44 (2002), 900.
doi: 10.1137/S0036144502404442. |
[16] |
R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differential Equations., 247 (2009), 866.
doi: 10.1016/j.jde.2009.03.008. |
[17] |
M. L. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interaction,, Amer. Natur., 97 (1963), 209. Google Scholar |
[18] |
S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863.
|
[19] |
H. Thieme and X. Zhao, A non-local delayed and diffusive predator-prey model,, Nonl. Anal. Real World Appl., 2 (2001), 145.
doi: 10.1016/S0362-546X(00)00112-7. |
[20] |
P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system,, J. Appl. Mech. Ser., E 30 (1963), 500.
doi: 10.1115/1.3636609. |
[21] |
Y. Wang, Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays,, J. Math. Anal. Appl., 328 (2007), 137.
doi: 10.1016/j.jmaa.2006.05.02. |
[22] |
J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, (1996).
|
[23] |
D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,, J. Differential Equations., 2001 (2009), 494.
doi: 10.1006/jdeq.2000.3982. |
[24] |
X. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects,, Appl. Math. Comput., 192 (2007), 137.
doi: 10.1016/j.amc.2007.03.033. |
[25] |
X. Yan and C. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Applied Mathematical Modelling, 34 (2010), 184.
doi: 10.1016/j.apm.2009.03.040. |
[26] |
F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944.
doi: 10.1016/j.jde.2008.10.024. |
[27] |
J. Zhang, W. Li and X. Yan, Multiple bifurcations in a delayed predator-prey diffusion system with a functional response,, Nonl. Anal. Real World Appl., 11 (2010), 2708.
doi: 10.1016/j.nonrwa.2009.09.019. |
show all references
References:
[1] |
S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system,, Int. J. Bifurcation Chaos., 22 (2012).
doi: 10.1142/S0218127412500617. |
[2] |
T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays,, Trans. Amer. Math. Soc., 352 (2000), 2217.
doi: 10.1090/S0002-9947-00-02280-7. |
[3] |
T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.
doi: 10.1006/jmaa.2000.7182. |
[4] |
T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations with parameters and applications to Hopf bifurcation,, J. Differential Equations., 122 (1995), 181.
doi: 10.1006/jdeq.1995.1144. |
[5] |
T. Faria and L. T. Magalh, Normal forms for retarded functional-differential equations and applications to Bogdanov-Takens singularity,, J. Differential Equations., 122 (1995), 201.
doi: 10.1006/jdeq.1995.1145. |
[6] |
B. C. Goodwin, "Temporal Organzization in Cells,", Academic Press, (1963). Google Scholar |
[7] |
J. K. Hale, "Theory of Functinal Differentail Equations,", Second edition. Applied Mathematical Sciences, (1977).
|
[8] |
B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge University Press, (1981).
|
[9] |
C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canadian Entomologist, 91 (1959), 385. Google Scholar |
[10] |
G. Hu and W. Li, Hopf bifurcation analysis for a delayed predator-prey system with diffusion effects,, Nonl. Anal. Real World Appl., 11 (2010), 819.
doi: 10.1016/j.nonrwa.2009.01.027. |
[11] |
G. E. Hutchinson, Circular causal systems in ecology,, Ann. N.Y. Acad. Sci., 50 (1948), 221. Google Scholar |
[12] |
W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a prey refuge,, J. Differential Equations., 231 (2006), 534.
doi: 10.1016/j.jde.2006.08.001. |
[13] |
X. Lin, J. W.-H. So and J. Wu, Center manifolds for partial differential equations with delay,, Proc. Roy. Soc. Edinburgh., 122 A (1992), 237.
doi: 10.1017/S0308210500021090. |
[14] |
R. M. May, Limit cycles in predator-prey communities,, Science, 177 (1972), 900. Google Scholar |
[15] |
A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics,, SIAM Rev., 44 (2002), 900.
doi: 10.1137/S0036144502404442. |
[16] |
R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case,, J. Differential Equations., 247 (2009), 866.
doi: 10.1016/j.jde.2009.03.008. |
[17] |
M. L. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interaction,, Amer. Natur., 97 (1963), 209. Google Scholar |
[18] |
S. Ruan and J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 863.
|
[19] |
H. Thieme and X. Zhao, A non-local delayed and diffusive predator-prey model,, Nonl. Anal. Real World Appl., 2 (2001), 145.
doi: 10.1016/S0362-546X(00)00112-7. |
[20] |
P. K. C. Wang, Asymptotic stability of a time-delayed diffusion system,, J. Appl. Mech. Ser., E 30 (1963), 500.
doi: 10.1115/1.3636609. |
[21] |
Y. Wang, Asymptotic behavior of solutions for a class of predator-prey reaction-diffusion systems with time delays,, J. Math. Anal. Appl., 328 (2007), 137.
doi: 10.1016/j.jmaa.2006.05.02. |
[22] |
J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, (1996).
|
[23] |
D. Xiao and S. Ruan, Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,, J. Differential Equations., 2001 (2009), 494.
doi: 10.1006/jdeq.2000.3982. |
[24] |
X. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects,, Appl. Math. Comput., 192 (2007), 137.
doi: 10.1016/j.amc.2007.03.033. |
[25] |
X. Yan and C. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Applied Mathematical Modelling, 34 (2010), 184.
doi: 10.1016/j.apm.2009.03.040. |
[26] |
F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944.
doi: 10.1016/j.jde.2008.10.024. |
[27] |
J. Zhang, W. Li and X. Yan, Multiple bifurcations in a delayed predator-prey diffusion system with a functional response,, Nonl. Anal. Real World Appl., 11 (2010), 2708.
doi: 10.1016/j.nonrwa.2009.09.019. |
[1] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[2] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[3] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[4] |
Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148 |
[5] |
Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021007 |
[6] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[7] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[8] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[9] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[10] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[11] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[12] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[13] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[14] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[15] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[16] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[17] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[18] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[19] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[20] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]