January  2013, 12(1): 503-518. doi: 10.3934/cpaa.2013.12.503

Incompressible type euler as scaling limit of compressible Euler-Maxwell equations

1. 

College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011, China, China

2. 

College of Applied Sciences, Beijing University of Technology, PingLeYuan100, Chaoyang District, Beijing 100022

Received  December 2010 Revised  April 2011 Published  September 2012

In this paper, we study the convergence of time-dependent Euler-Maxwell equations to incompressible type Euler equations in a torus via the combined quasi-neutral and non-relativistic limit. For well prepared initial data, the local existence of smooth solutions to the limit equations is proved by an iterative scheme. Moreover, the convergences of solutions of the former to the solutions of the latter are justified rigorously by an analysis of asymptotic expansions and the symmetric hyperbolic property of the systems.
Citation: Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503
References:
[1]

F. Chen, "Introduction to Plasma Physics and Controlled Fusion,", Vol. 1, (1984).   Google Scholar

[2]

Andreas Dinklage et al, "Plasma Physics, Lect. Notes Phys,", 670, (2005).   Google Scholar

[3]

V. E. Golant, A. P. Zhilinski and I. E. Sakharov, "Fundamentals of Plasma Physics,", John Wiley and Sons, (1980).  doi: 01.44227.  Google Scholar

[4]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737.  doi: 10.1080/03605300008821529.  Google Scholar

[5]

S. Wang and S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 31 (2006), 571.   Google Scholar

[6]

L. Hsiao, P. Markowichand S. Wang, The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors,, J. Differential Equations, 192 (2003), 111.  doi: 10.1016/S0022-0396(03)00063-9.  Google Scholar

[7]

M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system,, J. Nonlinear Sci., 11 (2001), 193.  doi: 10.1007/s00332-001-0004-9.  Google Scholar

[8]

Y. J. Peng and Y. G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations,, Asymptot. Anal., 41 (2005), 141.   Google Scholar

[9]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics,, Comm. Partial Differential Equations, 25 (2000), 1099.  doi: 10.1080/03605300008821542.  Google Scholar

[10]

S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity,, Comm. Partial Differential Equations, 29 (2004), 419.  doi: 10.1081/PDE-120030403.  Google Scholar

[11]

Pierre Crispel and Pierre Degond, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit,, J. Comput. Phys., 223 (2006), 208.  doi: 10.1016/j.jcp.2006.09.004.  Google Scholar

[12]

G. Q. Chen, J. W. Jerome and D. H. Wang, Compressible Euler-Maxwell equations,, Trans. Theory Stat. Phys., 29 (2000), 311.  doi: 10.1080/00411450008205877.  Google Scholar

[13]

J. W. Jerome, The Cauchy problem for compressible hydrodynamic-Maxwell systems: A local theory for smooth solutions,, Differential and Integral Equations, 16 (2003), 1345.   Google Scholar

[14]

Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations,, Chin. Ann. Math., 28(B) (2007), 583.  doi: 10.1007/s11401-005-0556-3.  Google Scholar

[15]

Y. J. Peng and S. Wang, Rigorous derivayion of incompressible e-MHD equations from compressible Euler-Maxwell equations,, SIAM J. MATH. ANAL., 40 (2008), 540.  doi: 10.1137/070686056.  Google Scholar

[16]

J. W. Yang and S. Wang, Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3267863.  Google Scholar

[17]

J. W. Yang and S. Wang, The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma,, Nonlinear Anal., 72 (2010), 1829.  doi: 10.1016/j.na.2009.09.024.  Google Scholar

[18]

Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to incompressible Eule equations,, Comm. Partial Differential Equations, 33 (2008), 349.  doi: 10.1080/03605300701318989.  Google Scholar

[19]

W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms,, J. Differential Equations, 155 (1999), 89.  doi: 10.1006/jdeq.1998.3584.  Google Scholar

[20]

Y. J. Peng, Y.-G. Wang and W.-A. Yong, Quasi-neutral limit of the non-isentropic the Euler-Poisson system,, Procedings of the Royal Society of Edinburgh, 136A (2006), 1013.  doi: 10.1017/S0308210500004856.  Google Scholar

[21]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, Spectral Theory and Differential Equations (Proc. Sympos., (1974), 25.  doi: 10.1007/BFb0067080.  Google Scholar

[22]

A. Majda, "Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,", Applied Mathematical Sciences, (1984).   Google Scholar

[23]

S. Klainerman and A. Majda, Compressible and incompressible fluids,, Comm. Pure Appl. Math., XXXV (1982), 629.  doi: 10.1002/cpa.3160350503.  Google Scholar

[24]

S. Klainerman and A. Majda, Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481.  doi: 10.1002/cpa.3160340405.  Google Scholar

show all references

References:
[1]

F. Chen, "Introduction to Plasma Physics and Controlled Fusion,", Vol. 1, (1984).   Google Scholar

[2]

Andreas Dinklage et al, "Plasma Physics, Lect. Notes Phys,", 670, (2005).   Google Scholar

[3]

V. E. Golant, A. P. Zhilinski and I. E. Sakharov, "Fundamentals of Plasma Physics,", John Wiley and Sons, (1980).  doi: 01.44227.  Google Scholar

[4]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 25 (2000), 737.  doi: 10.1080/03605300008821529.  Google Scholar

[5]

S. Wang and S. Jiang, The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations,, Comm. Partial Differential Equations, 31 (2006), 571.   Google Scholar

[6]

L. Hsiao, P. Markowichand S. Wang, The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors,, J. Differential Equations, 192 (2003), 111.  doi: 10.1016/S0022-0396(03)00063-9.  Google Scholar

[7]

M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system,, J. Nonlinear Sci., 11 (2001), 193.  doi: 10.1007/s00332-001-0004-9.  Google Scholar

[8]

Y. J. Peng and Y. G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations,, Asymptot. Anal., 41 (2005), 141.   Google Scholar

[9]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics,, Comm. Partial Differential Equations, 25 (2000), 1099.  doi: 10.1080/03605300008821542.  Google Scholar

[10]

S. Wang, Quasineutral limit of Euler-Poisson system with and without viscosity,, Comm. Partial Differential Equations, 29 (2004), 419.  doi: 10.1081/PDE-120030403.  Google Scholar

[11]

Pierre Crispel and Pierre Degond, An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit,, J. Comput. Phys., 223 (2006), 208.  doi: 10.1016/j.jcp.2006.09.004.  Google Scholar

[12]

G. Q. Chen, J. W. Jerome and D. H. Wang, Compressible Euler-Maxwell equations,, Trans. Theory Stat. Phys., 29 (2000), 311.  doi: 10.1080/00411450008205877.  Google Scholar

[13]

J. W. Jerome, The Cauchy problem for compressible hydrodynamic-Maxwell systems: A local theory for smooth solutions,, Differential and Integral Equations, 16 (2003), 1345.   Google Scholar

[14]

Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations,, Chin. Ann. Math., 28(B) (2007), 583.  doi: 10.1007/s11401-005-0556-3.  Google Scholar

[15]

Y. J. Peng and S. Wang, Rigorous derivayion of incompressible e-MHD equations from compressible Euler-Maxwell equations,, SIAM J. MATH. ANAL., 40 (2008), 540.  doi: 10.1137/070686056.  Google Scholar

[16]

J. W. Yang and S. Wang, Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3267863.  Google Scholar

[17]

J. W. Yang and S. Wang, The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma,, Nonlinear Anal., 72 (2010), 1829.  doi: 10.1016/j.na.2009.09.024.  Google Scholar

[18]

Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to incompressible Eule equations,, Comm. Partial Differential Equations, 33 (2008), 349.  doi: 10.1080/03605300701318989.  Google Scholar

[19]

W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms,, J. Differential Equations, 155 (1999), 89.  doi: 10.1006/jdeq.1998.3584.  Google Scholar

[20]

Y. J. Peng, Y.-G. Wang and W.-A. Yong, Quasi-neutral limit of the non-isentropic the Euler-Poisson system,, Procedings of the Royal Society of Edinburgh, 136A (2006), 1013.  doi: 10.1017/S0308210500004856.  Google Scholar

[21]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, Spectral Theory and Differential Equations (Proc. Sympos., (1974), 25.  doi: 10.1007/BFb0067080.  Google Scholar

[22]

A. Majda, "Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,", Applied Mathematical Sciences, (1984).   Google Scholar

[23]

S. Klainerman and A. Majda, Compressible and incompressible fluids,, Comm. Pure Appl. Math., XXXV (1982), 629.  doi: 10.1002/cpa.3160350503.  Google Scholar

[24]

S. Klainerman and A. Majda, Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids,, Comm. Pure Appl. Math., 34 (1981), 481.  doi: 10.1002/cpa.3160340405.  Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[5]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]