Citation: |
[1] |
T. Aoki, Locally bounded linear topological spaces, Proc. Japan Acad. Tokyo, 18 (1942), 588-594.doi: 10.3792/pia/1195573733. |
[2] |
Y. Brudnyi and P. Shvartsman, Whitney's extension problem for multivariate $C^{1,\omega}$-functions, Trans. Amer. Math. Soc., 353 (2001), 2487-2512.doi: 10.1090/S0002-9947-01-02756-8. |
[3] |
L. Chen, Smoothness and smooth extensions (I): Generalization of MWK functions and gradually varied functions, preprint, arXiv:1005.3727v1. |
[4] |
L. Chen, A digital-discrete method for smooth-continuous data reconstruction, preprint, arXiv:1010.3299v1. |
[5] |
R. R. Coifman and G. Weiss, "Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes," Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, 1971. |
[6] |
R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569-645.doi: 10.1090/S0002-9904-1977-14325-5. |
[7] |
R. Engelking, "General Topology," Heldermann Verlag, Berlin, 1989. |
[8] |
C. Fefferman and B. Klartag, An example related to Whitney extension with almost minimal $C^m$ norm, Rev. Mat. Iberoamericana, 25 (2009), 423-446.doi: 10.4171/RMI/571. |
[9] |
C. Fefferman, A sharp form of Whitney's extension theorem, Ann. of Math., 161 (2005), 509-577.doi: 10.4007/annals.2005.161.509. |
[10] |
H. Federer, "Geometric Measure Theory," Springer-Verlag, Berlin, 1969. |
[11] |
A. Gogatishvili, P. Koskela and N. Shanmugalingam, Interpolation properties of Besov spaces defined on metric spaces, Mathematische Nachrichten, Special Issue: Erhard Schmidt Memorial Issue, Part II, Vol. 283 (2010), 215-231.doi: 10.1002/mana.200810242. |
[12] |
J. Heinonen, "Lectures on Analysis on Metric Spaces," Springer-Verlag, New York, 2001.doi: 10.1007/978-1-4613-0131-8. |
[13] |
E. Hille and R. S. Phillips, "Functional Analysis and Semigroups," Amer. Math. Soc. Colloq. Publ., Vol. 31, Amer. Math. Soc., Providence, RI, 1957. |
[14] |
L. Hörmander, On the division of distributions by polynomials, Ark. Mat., 3 (1958), 555-568.doi: 10.1007/BF02589517. |
[15] |
A. Jonsson and H. Wallin, "Function Spaces on Subsets of $R^n$," Math. Rep., Vol. 2, No. 1, 1984. |
[16] |
N. J. Kalton, N. T. Peck and J. W. Roberts, "An $F$-space Sampler," London Math. Society Lecture Notes Series, Vol. 89, Cambridge University Press, Cambridge, 1984. |
[17] |
M. D. Kirszbraun, Über die zusammenziehende und Lipschitzsche transformationen, Fundamenta Mathematicae, 22 (1934), 77-108. |
[18] |
P. Koskela, N. Shanmugalingam and H. Tuominen, Removable sets for the Poincaré inequality on metric spaces, Indiana Math. J., 49 (2000), 333-352.doi: 10.1512/iumj.2000.49.1719. |
[19] |
S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Expositiones Mathematicae, 3 (1983), 193-260. |
[20] |
R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math., 33 (1979), 257-270.doi: 10.1016/0001-8708(79)90012-4. |
[21] |
R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math., 33 (1979), 271-309.doi: 10.1016/0001-8708(79)90013-6. |
[22] |
E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1934), 837-842.doi: 10.1090/S0002-9904-1934-05978-0. |
[23] |
D. Mitrea, I. Mitrea, M. Mitrea and S. Monniaux, "Groupoid Metrization Theory with Applications to Analysis on Quasi-Metric Spaces and Functional Analysis," to appear in the Applied and Numerical Harmonic Analysis monograph series, Brikhäuser (2012), 481 pages. |
[24] |
J. R. Munkres, "Topology," Second edition, Prentice Hall, 2000. |
[25] |
S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 5 (1957), 471-473. |
[26] |
R. A. Rosenbaum, Subadditive functions, Duke Math. J., 17 (1950), 227-242.doi: 10.1215/S0012-7094-50-01721-2. |
[27] |
A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986), 177-184.doi: 10.1016/0167-8655(86)90017-6. |
[28] |
J. T. Schwartz, "Nonlinear Functional Analysis," Gordon and Breach Science Publishers, New York, 1969. |
[29] |
E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. |
[30] |
F. A. Valentine, On the extension of a vector function so as to preserve a Lipschitz condition, Bulletin of the American Mathematical Society, 49 (1943), 100-108.doi: 10.1090/S0002-9904-1943-07859-7. |
[31] |
F. A. Valentine, A Lipschitz condition preserving extension for a vector function, American Journal of Mathematics, 67 (1945), 83-93.doi: 10.2307/2371917. |
[32] |
H. Whitney, Analytic extensions of functions defined on closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.doi: 10.1090/S0002-9947-1934-1501735-3. |