Citation: |
[1] |
C. Bandle and M. Essen, On the solutions of quasilinear elliptic problems with boundary blow-up, in "Partial Differential Equations of Elliptic Type" (A. Alvino, E. Fabes and G. Talenti eds.), Symposia Mathematica 35, Cambridge University Press, 1994, pp. 93-111. |
[2] |
C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations, existence, uniqueness and asymptotic behaviour, Journal d'analyse mathématique, 58 (1992), 9-24.doi: 10.1007/BF02790355. |
[3] |
C. Bandle and M. Marcus, Asymptotic behaviour of solutions and their derivatives for semilinear elliptic problems with blowup on the boundary, Ann. Inst. Henri Poincaré, 12 (1995), 155-171. |
[4] |
C. Bandle and H. Leutwiler, On a quasilinear elliptic equation and a Riemannian metric invariant under Mobius transformation, Aequationes Math., 42 (1991), 166-181.doi: 10.1007/BF01818488. |
[5] |
C. Bandle and S. Vernier-Piro, Estimates for solutions of quasilinear problems with dead cores, Za Math. Phys, 54 (2003), 815-821.doi: 10.1007/s00033-003-3203-4. |
[6] |
L. Bieberbach, $\Delta u = e^u$ und die automorphen funktionen, Math. Ann., 77 (1916), 173-212.doi: 10.1007/BF01456901. |
[7] |
I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci Toulouse Math, 13 (2004), 261-287.doi: 10.5802/afst.1070. |
[8] |
I. Birindelli and F. Demengel, First eigenvalue and Maximum principle for fully nonlinear singular operators, Advances in Differential Equations, 11 (2006), 91-119. |
[9] |
I. Birindelli and F. Demengel, Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators, Comm. Pure and Appl. Analysis, 6 (2007), 335-366.doi: 10.3934/cpaa.2007.6.335. |
[10] |
I. Birindelli and F. Demengel, The Dirichlet problem for singular fully nonlinear operators, Discrete and Continuous Dynamical Sytems, Special volume, September 2007, page 110-121. |
[11] |
I. Birindelli and F. Demengel, Regularity of radial solutions for degenerate fully nonlinear equations, Arxiv 0339276, October 2011. |
[12] |
I. Birindelli and F. Demengel, Regularity and uniqueness of the first eigenfunction for singular fully non linear operators, Electronic Journal of Differential Equations, 249 (2010), 1089-1110.doi: 10.1016/j.jde.2010.03.015. |
[13] |
I. Birindelli and F. Demengel, Uniqueness of the first eigenfunction for fully nonlinear equations: the radial case, Journal for analysis and its applications, ZAA, 29 (2010), 75-88.doi: 10.4171/ZAA/1398. |
[14] |
I. Birindelli and F. Demengel, Eigenfunctions for singular fully nonlinear equations in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 697-714.doi: 10.1007/s00030-010-0077-y. |
[15] |
L. Caffarelli, Interior a priori estimates for solutions of fully non-linear equations, Ann. Math., 130 (1989), 189-213. |
[16] |
X. Cabre and L. Caffarelli, Regularity for viscosity solutions of fully nonlinear equations F(D2u) = 0, Topological Meth. Nonlinear Anal., 6 (1995), 31-48. |
[17] |
X. Cabre and L. Caffarelli, Interior $C^2$ regularity theory for a class of nonconvex fully nonlinear elliptic equations, J. Maths Pures Appl., 82 (2003), 573-612.doi: 10.1016/S0021-7824(03)00029-1. |
[18] |
I. Capuzzo Dolcetta and A. Vitolo, Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 539-557.doi: 10.3934/dcds.2010.28.539. |
[19] |
O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry, J. Differential Equations, 249 (2010), 931-964.doi: 10.1016/j.jde.2010.02.023. |
[20] |
O. Costin, L. Dupaigne and O. Goubet, Uniqueness of large solutions, J. Math. Analysis, 395 (2012), 806-812.doi: 10.1016/j.jmaa.2012.05.085. |
[21] |
D. P. Covei, Existence of solutions to quasilinear elliptic problems with boundary blow up, An. Univ. Oradea Fasc. Mat., 17 (2010), 7784. |
[22] |
G. Davila, P. Felmer and A. Quaas, Harnack Inequality for singular fully nonlinear operators and some existence's results, Calculus of Variations and PDE, 39 (2010), 557-578.doi: 10.1007/s00526-010-0325-3. |
[23] |
M. Del Pino and R. Manasevich, Global bifurcation from the eigenvalues of the p-Laplacian, Journal of Differential Equations, 92 (1991), 226-251.doi: 10.1016/0022-0396(91)90048-E. |
[24] |
G. Diaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Analysis. Theory, Methods and Applications, 20 (1993), 97-125.doi: 10.1016/0362-546X(93)90012-H. |
[25] |
S. Dumont, L. Dupaigne, O. Goubet and V. Radulescu, Back to the Keller-Osserman condition for boundary blow up solutions, Advanced Nonlinear Studies, 7 (2007), 271-298. |
[26] |
M. Esteban, P. Felmer and A. Quaas, Super-linear elliptic equation for fully nonlinear operators without growth restrictions for the data, Proc. Roy. Soc. Edinburgh, 53 (2010), 125-141.doi: 10.1017/S0013091507001393. |
[27] |
C. Imbert, Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully non-linear elliptic equations, Journal of Differential Equations, 250 (2011), 1553-1574.doi: 10.1016/j.jde.2010.07.005. |
[28] |
J. B. Keller, On solutions of $\Delta u =f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.doi: 10.1002/cpa.3160100402. |
[29] |
A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.doi: 10.1090/S0002-9939-1991-1037213-9. |
[30] |
C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in "Contribution to Analysis" (L. Ahlfors, ed.), Academic Press, New York, 1974. |
[31] |
M. Marcus and L. Véron, Uniqueness and asymptotic behaviour of solutions with boundary blowup for a class of nonlinear elliptic equations, Ann. Inst. Henri Poincaré, 14 (1997), 237-274.doi: 10.1016/S0294-1449(97)80146-1. |
[32] |
M. Marcus and L. Véron, Existence and uniqueness results for large solutions of nonlinear elliptic equations, J. Evol. Equations, 3 (2004), 637-652. |
[33] |
J. Matero, Quasilinear elliptic equations with boundary blow up, Journal d'analyse mathématique, 69 (1996), 229-247.doi: 10.1007/BF02787108. |
[34] |
N. Nadirashvili and S. Vladut, On axially symmetric solutions of fully nonlinear elliptic equations, To appear in Math. Z. |
[35] |
P. Pucci and J. Serrin, Dead Cores and Bursts for quasilinear Singular elliptic equations, SIAM Journal of Math. Analysis, 38 (2006), 259-278.doi: 10.1137/050630027. |
[36] |
R. Osserman, On the inequality $\Delta u \geq f(u)$, Pacific J. Math., 7 (1957), 1641-1647. |
[37] |
S. L. Pohozaev, The Dirichlet problem for the equation $\Delta u = u^2$, Sov. Math. Dokl., 1 (1961), 1143-1146. |
[38] |
H. Rademacher, Einige besondere Probleme der partiellen Differentialgleichungen, in "Die Differential- und lntegralgleichungen der Mechanik und Physik" (P. Frank und R. von Mises, eds.), Rosenberg, New York, 1943. |
[39] |
L. Véron, Semilinear elliptic equations with uniform blow-up on the boundary, J. Analyse Math., 58 (1992), 94-102.doi: 10.1007/BF02790229. |
[40] |
H. Wittich, Ganze Losungen der Differentialgleiehung $\Delta u = e^u$, Math. Z., 49 (1944), 579-582.doi: 10.1007/BF01174219. |