March  2013, 12(2): 647-661. doi: 10.3934/cpaa.2013.12.647

The decay estimates of solutions for 1D compressible flows with density-dependent viscosity coefficients

1. 

School of Mathematical and information Science, Henan Polytechnic University, Jiaozuo Henan, 454003, China

2. 

Beijing No. 19 Middle School, Beijing 100089, China

3. 

School of Mathematical Sciences, Capital Normal University, Beijing 100037

Received  February 2010 Revised  April 2012 Published  September 2012

We consider the Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients, we are mainly concerned with the decay estimates of the density and velocity as $t \rightarrow \infty$. Firstly, we obtain the decay estimates of $\rho-\bar{\rho}$ and u in $L^2(R)$ norm, then we obtain the decay estimate of $\rho-\bar{\rho}$ in $L^{\infty}(R)$ norm as $\bar{\rho}>0$. Secondly, we construct a functional and use the energy method to obtain the decay estimate of $\rho$ in $L^{\infty}(R)$ norm as $\bar{\rho}=0$.
Citation: Wuming Li, Xiaojun Liu, Quansen Jiu. The decay estimates of solutions for 1D compressible flows with density-dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2013, 12 (2) : 647-661. doi: 10.3934/cpaa.2013.12.647
References:
[1]

Robert A. Adams and John J. F. Fournier, "Sobolev Spaces," Second Edition,, Academic Press, (2003).  doi: 10.1016/S0079-8169(03)80001-6.  Google Scholar

[2]

D. Bresch, B. Desjardins and Chi-Kun Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems,, Communications in Partial Differential Equations, 28 (2003), 843.  doi: 10.1081/PDE-120020499.  Google Scholar

[3]

Eduard Feireisl, On the motion of a viscous, compressible, and heat conducting fluid,, Indiana Univ. Math. J., 53 (2004), 1705.  doi: 10.1512/iumj.2004.53.2510.  Google Scholar

[4]

E. Feireisl, A. Novotný and H.Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[5]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Archive for Rational Mechanics and Analysis, 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[6]

J. F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation,, Discrete and Continuous Dynamical Systems, 1 (2001), 89.  doi: 10.3934/dcdsb.2001.1.89.  Google Scholar

[7]

Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem,, Archive for Rational Mechanics and Analysis, 89 (1985), 267.  doi: 10.1007/BF00276875.  Google Scholar

[8]

David Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer, (1998).   Google Scholar

[9]

Zhenhua Guo, Quansen Jiu and Zhouping Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, SIAM Journal on Mathematical Analysis, 39 (2008), 1402.  doi: 10.1137/070680333.  Google Scholar

[10]

Zhenhua Guo and Changjiang Zhu, Remarks on one-dimensional Compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Acta Mathematica Sinica, 26 (2010), 2015.  doi: 10.1007/s10114-009-7559-z.  Google Scholar

[11]

Cheng He and Zhouping Xin, On the regularity of weak solutions to the Magnetohydrodynamic equations,, Journal of Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[12]

David Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169.  doi: 10.1090/S0002-9947-1987-0896014-6.  Google Scholar

[13]

D. Hoff, Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states,, ZAMP, 49 (1998), 774.  doi: 10.1007/PL00001488.  Google Scholar

[14]

David Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Archive for Rational Mechanics and Analysis, 132 (1995), 1.  doi: 10.1007/BF00390346.  Google Scholar

[15]

David Hoff and Denis Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.  doi: 10.1137/0151043.  Google Scholar

[16]

Quansen Jiu and Zhouping Xin, The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients,, Kinetic and Related Models, 1 (2008), 313.  doi: 10.3934/krm.2008.1.313.  Google Scholar

[17]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.  doi: 10.1016/0021-8928(77)90011-9.  Google Scholar

[18]

H. Kozono and T. Ogawa, Some $L^p$ estimate for the exterior Stokes flow and an application to non-stationary Navier-Stokes equations,, Indiana Univ. Math. J., 41 (1992), 789.  doi: 10.1512/iumj.1992.41.41041.  Google Scholar

[19]

H. Kozono and H. Sohr, Density properties for solenoidal vector fields, with applications to the Navier-Stokes equations in exterior domains,, Journal of the Mathematical Society of Japan, 44 (1992), 307.  doi: 10.2969/jmsj/04420307.  Google Scholar

[20]

Hai-liang Li, Jing Li and Zhouping Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Communications in Mathematical Physics, 281 (2008), 401.  doi: 10.1007/s00220-008-0495-4.  Google Scholar

[21]

P. L. Lions, "Mathematical Topics in Fluid Mechanics," Volume 2, Compressible Models,, Oxford Science Publications, (1998).   Google Scholar

[22]

T. P. Liu, Z. P. Xin and T. Yang, Vacuum states for compressible flow,, Discrete and Continuous Dynamical Systems, 4 (1998), 1.  doi: 10.3934/dcds.1998.4.1.  Google Scholar

[23]

K. Masuda, Weak solutions of Navier-Stokes equations,, Tohoku Mathematical Journal, 36 (1984), 623.  doi: 10.2748/tmj/1178228767.  Google Scholar

[24]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[25]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation,, Comm. Partial Differential Equatiions, 32 (2007), 431.  doi: 10.1080/03605300600857079.  Google Scholar

[26]

J. Serrin, The initial value problem for the Navier-Stokes equations,, Nonlinear Problems, (1963), 69.   Google Scholar

[27]

J. Simon, Compact sets in the space $L^p(0,T ;B)$,, Ann. Mat. Pura Appl., 146 (1986), 65.  doi: 10.1007/BF01762360.  Google Scholar

[28]

H. Sohr, "The Navier-Stokes Equations: An Elementary Functional Analytic Approach,", Birkh$\ddota$user Advanced Texts, (2001).   Google Scholar

[29]

Roger Temam, "Navier-Stokes Equations: Theory And Numerical Analysis,", North-Holland Publishing Company-Amsterdam, (1977).   Google Scholar

[30]

Zhouping Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Communications on Pure and Applied Mathematics, 51 (1998), 229.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[31]

Ting zhang and Daoyuan Fang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient,, Archive for Rational Mechanics and Analysis, 182 (2006), 223.  doi: 10.1007/s00205-006-0425-6.  Google Scholar

[32]

Changjiang Zhu, Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Communications in Mathematical Physics, 293 (2010), 279.  doi: 10.1007/s00220-009-0914-1.  Google Scholar

show all references

References:
[1]

Robert A. Adams and John J. F. Fournier, "Sobolev Spaces," Second Edition,, Academic Press, (2003).  doi: 10.1016/S0079-8169(03)80001-6.  Google Scholar

[2]

D. Bresch, B. Desjardins and Chi-Kun Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems,, Communications in Partial Differential Equations, 28 (2003), 843.  doi: 10.1081/PDE-120020499.  Google Scholar

[3]

Eduard Feireisl, On the motion of a viscous, compressible, and heat conducting fluid,, Indiana Univ. Math. J., 53 (2004), 1705.  doi: 10.1512/iumj.2004.53.2510.  Google Scholar

[4]

E. Feireisl, A. Novotný and H.Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[5]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I,, Archive for Rational Mechanics and Analysis, 16 (1964), 269.  doi: 10.1007/BF00276188.  Google Scholar

[6]

J. F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation,, Discrete and Continuous Dynamical Systems, 1 (2001), 89.  doi: 10.3934/dcdsb.2001.1.89.  Google Scholar

[7]

Y. Giga and T. Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem,, Archive for Rational Mechanics and Analysis, 89 (1985), 267.  doi: 10.1007/BF00276875.  Google Scholar

[8]

David Gilbarg and Neil S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer, (1998).   Google Scholar

[9]

Zhenhua Guo, Quansen Jiu and Zhouping Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, SIAM Journal on Mathematical Analysis, 39 (2008), 1402.  doi: 10.1137/070680333.  Google Scholar

[10]

Zhenhua Guo and Changjiang Zhu, Remarks on one-dimensional Compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Acta Mathematica Sinica, 26 (2010), 2015.  doi: 10.1007/s10114-009-7559-z.  Google Scholar

[11]

Cheng He and Zhouping Xin, On the regularity of weak solutions to the Magnetohydrodynamic equations,, Journal of Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[12]

David Hoff, Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169.  doi: 10.1090/S0002-9947-1987-0896014-6.  Google Scholar

[13]

D. Hoff, Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states,, ZAMP, 49 (1998), 774.  doi: 10.1007/PL00001488.  Google Scholar

[14]

David Hoff, Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data,, Archive for Rational Mechanics and Analysis, 132 (1995), 1.  doi: 10.1007/BF00390346.  Google Scholar

[15]

David Hoff and Denis Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.  doi: 10.1137/0151043.  Google Scholar

[16]

Quansen Jiu and Zhouping Xin, The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients,, Kinetic and Related Models, 1 (2008), 313.  doi: 10.3934/krm.2008.1.313.  Google Scholar

[17]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.  doi: 10.1016/0021-8928(77)90011-9.  Google Scholar

[18]

H. Kozono and T. Ogawa, Some $L^p$ estimate for the exterior Stokes flow and an application to non-stationary Navier-Stokes equations,, Indiana Univ. Math. J., 41 (1992), 789.  doi: 10.1512/iumj.1992.41.41041.  Google Scholar

[19]

H. Kozono and H. Sohr, Density properties for solenoidal vector fields, with applications to the Navier-Stokes equations in exterior domains,, Journal of the Mathematical Society of Japan, 44 (1992), 307.  doi: 10.2969/jmsj/04420307.  Google Scholar

[20]

Hai-liang Li, Jing Li and Zhouping Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Communications in Mathematical Physics, 281 (2008), 401.  doi: 10.1007/s00220-008-0495-4.  Google Scholar

[21]

P. L. Lions, "Mathematical Topics in Fluid Mechanics," Volume 2, Compressible Models,, Oxford Science Publications, (1998).   Google Scholar

[22]

T. P. Liu, Z. P. Xin and T. Yang, Vacuum states for compressible flow,, Discrete and Continuous Dynamical Systems, 4 (1998), 1.  doi: 10.3934/dcds.1998.4.1.  Google Scholar

[23]

K. Masuda, Weak solutions of Navier-Stokes equations,, Tohoku Mathematical Journal, 36 (1984), 623.  doi: 10.2748/tmj/1178228767.  Google Scholar

[24]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[25]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation,, Comm. Partial Differential Equatiions, 32 (2007), 431.  doi: 10.1080/03605300600857079.  Google Scholar

[26]

J. Serrin, The initial value problem for the Navier-Stokes equations,, Nonlinear Problems, (1963), 69.   Google Scholar

[27]

J. Simon, Compact sets in the space $L^p(0,T ;B)$,, Ann. Mat. Pura Appl., 146 (1986), 65.  doi: 10.1007/BF01762360.  Google Scholar

[28]

H. Sohr, "The Navier-Stokes Equations: An Elementary Functional Analytic Approach,", Birkh$\ddota$user Advanced Texts, (2001).   Google Scholar

[29]

Roger Temam, "Navier-Stokes Equations: Theory And Numerical Analysis,", North-Holland Publishing Company-Amsterdam, (1977).   Google Scholar

[30]

Zhouping Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Communications on Pure and Applied Mathematics, 51 (1998), 229.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[31]

Ting zhang and Daoyuan Fang, Global behavior of compressible Navier-Stokes equations with a degenerate viscosity coefficient,, Archive for Rational Mechanics and Analysis, 182 (2006), 223.  doi: 10.1007/s00205-006-0425-6.  Google Scholar

[32]

Changjiang Zhu, Asymptotic behavior of compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Communications in Mathematical Physics, 293 (2010), 279.  doi: 10.1007/s00220-009-0914-1.  Google Scholar

[1]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[2]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[3]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[4]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[5]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[6]

Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361

[7]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[8]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[9]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[10]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[11]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[12]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[13]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[14]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[15]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[16]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[17]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[18]

Ana Bela Cruzeiro. Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553-560. doi: 10.3934/jgm.2019027

[19]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[20]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]