\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$

Abstract Related Papers Cited by
  • Let $n, m$ be a positive integer and let $R_+^n$ be the $n$-dimensional upper half Euclidean space. In this paper, we study the following integral equation \begin{eqnarray} u(x)=\int_{R_+^n}G(x,y)u^pdy, \end{eqnarray} where \begin{eqnarray*} G(x,y)=\frac{C_n}{|x-y|^{n-2m}}\int_0^{\frac{4x_n y_n}{|x-y|^2}}\frac{z^{m-1}}{(z+1)^{n/2}}dz, \end{eqnarray*} $C_{n}$ is a positive constant, $0 <2m 1$. Using the method of moving planes in integral forms, we show that equation (1) has no positive solution.
    Mathematics Subject Classification: Primary: 35J99, 45E10; Secondary: 45G05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Berestycki and L. Nirenberg, On the method of moving planes and sliding method, Bol. Soc. Brazil. Mat. (N. S.), 22 (1991), 1-37.doi: 10.1007/BF01244896.

    [2]

    G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations in $R^N$ and $R_+ ^N$ through the method of moving plane, Comn. PDE., 22 (1997), 9-10, 1671-1690.doi: 10.1080/03605309708821315.

    [3]

    L. CaoA Liouville-Type Theorem for an integral equation on a Half-Space $R_+ ^n$, Submitted.

    [4]

    W. Chen and C. Li, Radial symmetry of solutions for some integral systems of wolff type, Dis. Cont. Dyn. Sys., 30 (2011), 1083-1093.doi: 10.3934/dcds.2011.30.1083.

    [5]

    W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Drichlet Problems, J. Math. Anal. Appl., 377 (2011), 744-753.doi: 10.1016/j.jmaa.2010.11.035.

    [6]

    W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, Diff. Equa. Dyn. Syst., 2010.

    [7]

    W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematics Scientia, 29 (2009), 949-960.doi: 10.1016/S0252-9602(09)60079-5.

    [8]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330-343.

    [9]

    W. Chen and C. Li, Regularity of solutions for a system of integral equation, Commun. Pure Appl. Anal., 4 (2005), 1-8.

    [10]

    W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65.doi: 10.1081/PDE-200044445.

    [11]

    W. Chen and C. Li, Classification of solutions to some nonlinear equations, Duke Math. J., 63 (1991), 615–-622.doi: 10.1215/S0012-7094-91-06325-8.

    [12]

    D. Li and R. Zhuo, An integral eequation on Half space, Proc. Amer. Math. Soc., 138 (2010), 2779-2791.

    [13]

    C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $R^n$, Comment. Math. Helv., 73 (1998), 206-231.doi: 10.5169/seals-55100.

    [14]

    Y. Ge, Positive solutions in semilinear critical problems for polyharmonic operators, J. Math. Pures Appl., 84 (2005), 199–-245.doi: 10.1016/j.matpur.2004.10.002.

    [15]

    Y. Guo and J. Liu, Liouville-type theorems for polyharmonic equations in $R^N$ and in $R_+ ^N$, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 339-359.doi: 10.1017/S0308210506000394.

    [16]

    B. Gidas and J. Spruk, A prior bounds for positive solutions of nonlinear elliptic equations, Commun. PDEs, 6 (1981), 883-901.

    [17]

    C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011), 2676-2699.doi: 10.1016/j.aim.2010.07.020.

    [18]

    L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859.

    [19]

    W. Reichel and T. Weth, A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems, Math. Z., 261 (2009), 805-827.doi: 10.1007/s00209-008-0352-3.

    [20]

    J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return