\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quasilinear systems involving multiple critical exponents and potentials

Abstract Related Papers Cited by
  • In this paper, a quasilinear system of elliptic equations is investigated, which involves multiple critical Hardy--Sobolev exponents and Hardy--type terms. By variational methods and analytic technics, the existence of nontrivial solutions to the system is established.
    Mathematics Subject Classification: Primary: 35B33, 35J50; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence for quasilinear equations involving the$p$-laplacian, Boll. Unione Mat. Ital. Sez., B8 (2006), 445-484.

    [2]

    B. Abdellaoui, V. Felli and I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\R^N$, Calc. Var. Partial Differential Equations, 34 (2009), 97-137.doi: 10.1007/s00526-008-0177-2.

    [3]

    G. Arioli and F. Gazzola, Some results on $p-$Laplace equations with a critical growth term, Differential Integral Equations, 11 (1998), 311-326.

    [4]

    M. Bouchekif and Y. Nasri, On a singular elliptic system at resonance, Ann. Mat. Pura Appl., 189 (2010), 227-240.doi: 10.1007/s10231-009-0106-9.

    [5]

    L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights, Compos. Math., 53 (1984), 259-275.

    [6]

    D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations, 205 (2004), 521-537.doi: 10.1016/j.jde.2004.03.005.

    [7]

    F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence(and nonexistence), and symmetry of extermal functions, Comm. Pure Appl. Math., 54 (2001), 229-257.doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.

    [8]

    R. Dautray and P. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology, Physical Origins and Classical Methods," Vol. 1, Springer, Berlin, 1990.

    [9]

    A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations, 177 (2001), 494-522.doi: 10.1006/jdeq.2000.3999.

    [10]

    D. Figueiredo, I. Peral and J. Rossi, The critical hyperbola for a Hamiltonian elliptic system with weights, Ann. Mat. Pura Appl., 187 (2008),doi: 10.1007/s10231-007-0054-1.

    [11]

    N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.doi: 10.1090/S0002-9947-00-02560-5.

    [12]

    P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms, Nonlinear Anal., 61 (2005), 735-758.doi: 10.1016/j.na.2005.01.030.

    [13]

    G. Hardy, J. Littlewood and G. Polya, "Inequalities," reprint of the 1952 edition, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1988.

    [14]

    Y. Huang and D. Kang, On the singular elliptic systems involving multiple critical Sobolev exponents, Nonlinear Anal., 74 (2011), 400-412.doi: 10.1016/j.na.2009.02.024.

    [15]

    D. Kang, On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms, Nonlinear Anal., 68 (2008), 1973-1985.doi: 10.1016/j.na.2007.01.024.

    [16]

    D. Kang, On the quasilinear elliptic problem with a critical Hardy-Sobolev exponent and a Hardy term, Nonlinear Anal., 69 (2008), 2432-2444.doi: 10.1016/j.na.2007.08.022.

    [17]

    D. Kang, Some properties of solutions to the singular quasilinear problem, Nonlinear Anal., 72 (2010), 682-688.doi: 10.1016/j.na.2009.07.009.

    [18]

    P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (I), Rev. Mat. Iberoamericana, 1 (1985), 145-201.

    [19]

    P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (II), Rev. Mat. Iberoamericana, 1 (1985), 45-121.

    [20]

    Z. Liu and P. Han, Existence of solutions for singular elliptic systems with critical exponents, Nonlinear Anal., 69 (2008), 2968-2983.doi: 10.1016/j.na.2007.08.073.

    [21]

    P. Rabinowitz, "Minimax Methods in Critical Points Theory with Applications to Defferential Equations," CBMS Regional Conference Series in Mathematics, Vol. 65, Providence, RI, 1986.

    [22]

    K. Sandeep, On the first eigenfunction of a perturbed Hardy-Sobolev operator, Nonlinear Differential Equations Appl., 10 (2003), 223-253.doi: 10.1007/s00030-003-1039-4.

    [23]

    K. Sreenadh, On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights, Elctronic J. Differential Equations, 2002 (2002), 1-12.

    [24]

    S. Terracini, On positive solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 2 (1996), 241-264.

    [25]

    J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optimization, 12 (1984), 191-202.doi: 10.1007/BF01449041.

    [26]

    B. Xuan and J. Wang, Extremal functions and best constants to an inequality involving Hardy potential and critical Sobolev exponent, Nonlinear Anal., 71 (2009), 845-859.doi: 10.1016/j.na.2008.10.114.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return