Advanced Search
Article Contents
Article Contents

Quasilinear systems involving multiple critical exponents and potentials

Abstract Related Papers Cited by
  • In this paper, a quasilinear system of elliptic equations is investigated, which involves multiple critical Hardy--Sobolev exponents and Hardy--type terms. By variational methods and analytic technics, the existence of nontrivial solutions to the system is established.
    Mathematics Subject Classification: Primary: 35B33, 35J50; Secondary: 35J60.


    \begin{equation} \\ \end{equation}
  • [1]

    B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence for quasilinear equations involving the$p$-laplacian, Boll. Unione Mat. Ital. Sez., B8 (2006), 445-484.


    B. Abdellaoui, V. Felli and I. Peral, Some remarks on systems of elliptic equations doubly critical in the whole $\R^N$, Calc. Var. Partial Differential Equations, 34 (2009), 97-137.doi: 10.1007/s00526-008-0177-2.


    G. Arioli and F. Gazzola, Some results on $p-$Laplace equations with a critical growth term, Differential Integral Equations, 11 (1998), 311-326.


    M. Bouchekif and Y. Nasri, On a singular elliptic system at resonance, Ann. Mat. Pura Appl., 189 (2010), 227-240.doi: 10.1007/s10231-009-0106-9.


    L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights, Compos. Math., 53 (1984), 259-275.


    D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Differential Equations, 205 (2004), 521-537.doi: 10.1016/j.jde.2004.03.005.


    F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence(and nonexistence), and symmetry of extermal functions, Comm. Pure Appl. Math., 54 (2001), 229-257.doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I.


    R. Dautray and P. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology, Physical Origins and Classical Methods," Vol. 1, Springer, Berlin, 1990.


    A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations, 177 (2001), 494-522.doi: 10.1006/jdeq.2000.3999.


    D. Figueiredo, I. Peral and J. Rossi, The critical hyperbola for a Hamiltonian elliptic system with weights, Ann. Mat. Pura Appl., 187 (2008),doi: 10.1007/s10231-007-0054-1.


    N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.doi: 10.1090/S0002-9947-00-02560-5.


    P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms, Nonlinear Anal., 61 (2005), 735-758.doi: 10.1016/j.na.2005.01.030.


    G. Hardy, J. Littlewood and G. Polya, "Inequalities," reprint of the 1952 edition, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1988.


    Y. Huang and D. Kang, On the singular elliptic systems involving multiple critical Sobolev exponents, Nonlinear Anal., 74 (2011), 400-412.doi: 10.1016/j.na.2009.02.024.


    D. Kang, On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms, Nonlinear Anal., 68 (2008), 1973-1985.doi: 10.1016/j.na.2007.01.024.


    D. Kang, On the quasilinear elliptic problem with a critical Hardy-Sobolev exponent and a Hardy term, Nonlinear Anal., 69 (2008), 2432-2444.doi: 10.1016/j.na.2007.08.022.


    D. Kang, Some properties of solutions to the singular quasilinear problem, Nonlinear Anal., 72 (2010), 682-688.doi: 10.1016/j.na.2009.07.009.


    P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (I), Rev. Mat. Iberoamericana, 1 (1985), 145-201.


    P. L. Lions, The concentration compactness principle in the calculus of variations, the limit case (II), Rev. Mat. Iberoamericana, 1 (1985), 45-121.


    Z. Liu and P. Han, Existence of solutions for singular elliptic systems with critical exponents, Nonlinear Anal., 69 (2008), 2968-2983.doi: 10.1016/j.na.2007.08.073.


    P. Rabinowitz, "Minimax Methods in Critical Points Theory with Applications to Defferential Equations," CBMS Regional Conference Series in Mathematics, Vol. 65, Providence, RI, 1986.


    K. Sandeep, On the first eigenfunction of a perturbed Hardy-Sobolev operator, Nonlinear Differential Equations Appl., 10 (2003), 223-253.doi: 10.1007/s00030-003-1039-4.


    K. Sreenadh, On the eigenvalue problem for the Hardy-Sobolev operator with indefinite weights, Elctronic J. Differential Equations, 2002 (2002), 1-12.


    S. Terracini, On positive solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations, 2 (1996), 241-264.


    J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optimization, 12 (1984), 191-202.doi: 10.1007/BF01449041.


    B. Xuan and J. Wang, Extremal functions and best constants to an inequality involving Hardy potential and critical Sobolev exponent, Nonlinear Anal., 71 (2009), 845-859.doi: 10.1016/j.na.2008.10.114.

  • 加载中

Article Metrics

HTML views() PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint