March  2013, 12(2): 711-719. doi: 10.3934/cpaa.2013.12.711

Median values, 1-harmonic functions, and functions of least gradient

1. 

Department of Mathematics, Sewanee: The University of the South, Sewanee, TN 37383, United States

2. 

Department of Mathematics, Washington State University, Pullman, WA 99164, United States

Received  October 2011 Revised  June 2012 Published  September 2012

Motivated by the mean value property of harmonic functions, we introduce the local and global median value properties for continuous functions of two variables. We show that the Dirichlet problem associated with the local median value property is either easy or impossible to solve, and we prove that continuous functions with this property are $1$-harmonic in the viscosity sense. We then close with the following conjecture: a continuous function having the global median value property and prescribed boundary values coincides with the function of least gradient having those same boundary values.
Citation: Matthew B. Rudd, Heather A. Van Dyke. Median values, 1-harmonic functions, and functions of least gradient. Communications on Pure & Applied Analysis, 2013, 12 (2) : 711-719. doi: 10.3934/cpaa.2013.12.711
References:
[1]

F. Cao, "Geometric Curve Evolution and Image Processing,", Lecture Notes in Mathematics 1805, (1805). doi: 10.1007/b10404. Google Scholar

[2]

F. Catté, F. Dibos and G. Koepfler, A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets,, SIAM J. Numer. Anal., 32 (1995), 1895. doi: 10.1137/0732085. Google Scholar

[3]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992). Google Scholar

[4]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics 19, (1998). Google Scholar

[5]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Monographs in Mathematics 80, (1984). doi: 775682 (87a:58041). Google Scholar

[6]

D. Hartenstine and M. Rudd, Asymptotic statistical characterizations of $p$-harmonic functions of two variables,, Rocky Mountain J. Math., 41 (2011), 493. doi: 10.1216/RMJ-2011-41-2-493. Google Scholar

[7]

D. Hartenstine and M. Rudd, Statistical functional equations and $p$-harmonious functions,, preprint., (). Google Scholar

[8]

P. Juutinen, $p$-Harmonic approximation of functions of least gradient,, Indiana Univ. Math. J., 54 (2005), 1015. doi: 10.1512/iumj.2005.54.2658. Google Scholar

[9]

P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation,, SIAM J. Math. Anal., 33 (2001), 699. doi: 10.1137/S0036141000372179. Google Scholar

[10]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, Comm. Pure Appl. Math., 59 (2006), 344. doi: 10.1002/cpa.20101. Google Scholar

[11]

S. G. Noah, The median of a continuous function,, Real Analysis Exchange, 33 (2008), 269. Google Scholar

[12]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature,, Numer. Math., 99 (2004), 365. doi: 10.1007/s00211-004-0566-1. Google Scholar

[13]

S. J. Ruuth and B. Merriman, Convolution-generated motion and generalized Huygens' principles for interface motion,, SIAM J. Appl. Math., 60 (2000), 868. doi: 10.1137/S003613999833397X. Google Scholar

[14]

D. Stroock, "Probability Theory, An Analytic View,", Cambridge UP, (1993). Google Scholar

[15]

Z. Waksman and J. Wasilewsky, A theorem on level lines of continuous functions,, Israel J. Math., 27 (1977), 247. Google Scholar

[16]

W. P. Ziemer, "Weakly Differentiable Functions,", Springer-Verlag, (1989). doi: 10.1007/978-1-4612-1015-3. Google Scholar

[17]

W. P. Ziemer, Functions of least gradient and BV functions,, in, (1999), 270. Google Scholar

show all references

References:
[1]

F. Cao, "Geometric Curve Evolution and Image Processing,", Lecture Notes in Mathematics 1805, (1805). doi: 10.1007/b10404. Google Scholar

[2]

F. Catté, F. Dibos and G. Koepfler, A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets,, SIAM J. Numer. Anal., 32 (1995), 1895. doi: 10.1137/0732085. Google Scholar

[3]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992). Google Scholar

[4]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics 19, (1998). Google Scholar

[5]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Monographs in Mathematics 80, (1984). doi: 775682 (87a:58041). Google Scholar

[6]

D. Hartenstine and M. Rudd, Asymptotic statistical characterizations of $p$-harmonic functions of two variables,, Rocky Mountain J. Math., 41 (2011), 493. doi: 10.1216/RMJ-2011-41-2-493. Google Scholar

[7]

D. Hartenstine and M. Rudd, Statistical functional equations and $p$-harmonious functions,, preprint., (). Google Scholar

[8]

P. Juutinen, $p$-Harmonic approximation of functions of least gradient,, Indiana Univ. Math. J., 54 (2005), 1015. doi: 10.1512/iumj.2005.54.2658. Google Scholar

[9]

P. Juutinen, P. Lindqvist and J. J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation,, SIAM J. Math. Anal., 33 (2001), 699. doi: 10.1137/S0036141000372179. Google Scholar

[10]

R. V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature,, Comm. Pure Appl. Math., 59 (2006), 344. doi: 10.1002/cpa.20101. Google Scholar

[11]

S. G. Noah, The median of a continuous function,, Real Analysis Exchange, 33 (2008), 269. Google Scholar

[12]

A. M. Oberman, A convergent monotone difference scheme for motion of level sets by mean curvature,, Numer. Math., 99 (2004), 365. doi: 10.1007/s00211-004-0566-1. Google Scholar

[13]

S. J. Ruuth and B. Merriman, Convolution-generated motion and generalized Huygens' principles for interface motion,, SIAM J. Appl. Math., 60 (2000), 868. doi: 10.1137/S003613999833397X. Google Scholar

[14]

D. Stroock, "Probability Theory, An Analytic View,", Cambridge UP, (1993). Google Scholar

[15]

Z. Waksman and J. Wasilewsky, A theorem on level lines of continuous functions,, Israel J. Math., 27 (1977), 247. Google Scholar

[16]

W. P. Ziemer, "Weakly Differentiable Functions,", Springer-Verlag, (1989). doi: 10.1007/978-1-4612-1015-3. Google Scholar

[17]

W. P. Ziemer, Functions of least gradient and BV functions,, in, (1999), 270. Google Scholar

[1]

Bernd Kawohl, Friedemann Schuricht. First eigenfunctions of the 1-Laplacian are viscosity solutions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 329-339. doi: 10.3934/cpaa.2015.14.329

[2]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[3]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

[4]

Huajun Tang, T. C. Edwin Cheng, Chi To Ng. A note on the subtree ordered median problem in networks based on nestedness property. Journal of Industrial & Management Optimization, 2012, 8 (1) : 41-49. doi: 10.3934/jimo.2012.8.41

[5]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[6]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[7]

Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675

[8]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[9]

Yoshikazu Giga, Hirotoshi Kuroda. A counterexample to finite time stopping property for one-harmonic map flow. Communications on Pure & Applied Analysis, 2015, 14 (1) : 121-125. doi: 10.3934/cpaa.2015.14.121

[10]

Arrigo Cellina, Carlo Mariconda, Giulia Treu. Comparison results without strict convexity. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 57-65. doi: 10.3934/dcdsb.2009.11.57

[11]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[12]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[13]

C.Y. Wang, M.X. Li. Convergence property of the Fletcher-Reeves conjugate gradient method with errors. Journal of Industrial & Management Optimization, 2005, 1 (2) : 193-200. doi: 10.3934/jimo.2005.1.193

[14]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[15]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure & Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[16]

Gershon Kresin, Vladimir Maz’ya. Optimal estimates for the gradient of harmonic functions in the multidimensional half-space. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 425-440. doi: 10.3934/dcds.2010.28.425

[17]

Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691

[18]

Thomas Bartsch, Anna Maria Micheletti, Angela Pistoia. The Morse property for functions of Kirchhoff-Routh path type. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1867-1877. doi: 10.3934/dcdss.2019123

[19]

Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43

[20]

Yoshikazu Giga, Jürgen Saal. $L^1$ maximal regularity for the laplacian and applications. Conference Publications, 2011, 2011 (Special) : 495-504. doi: 10.3934/proc.2011.2011.495

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]