March  2013, 12(2): 721-733. doi: 10.3934/cpaa.2013.12.721

Multiple positive solutions for Kirchhoff type problems with singularity

1. 

Department of Mathematics, University of Chinese Academy of Sciences, Beijing 100049, P.R. China

2. 

Department of Mathematics, Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received  July 2011 Revised  May 2012 Published  September 2012

A class of Kirchhoff type problems containing both singular and superlinear terms is considered in a bounded domain in $R^3$: multiplicity results are obtained by variational methods.
Citation: Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721
References:
[1]

G. Anello, A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problems,, J. Math. Anal. Appl., 373 (2011), 248.  doi: 10.1016/j.jmaa.2010.07.019.  Google Scholar

[2]

C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876.  doi: 10.1016/j.jde.2010.11.017.  Google Scholar

[3]

J. Graham-Eagle, A variational approach to upper and lower solutions,, IMA J. Appl. Math., 44 (1990), 181.  doi: 10.1093/imamat/44.2.181.  Google Scholar

[4]

X. He and W. Zou, Infinitely many solutions for Kirchhoff-type problems,, Nonlinear Anal., 70 (2009), 1407.  doi: 10.1016/j.na.2008.02.021.  Google Scholar

[5]

D. S. Kang, On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms,, Nonlinear Anal., 68 (2008), 1973.  doi: 10.1016/j.na.2007.01.024.  Google Scholar

[6]

B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters,, J. Global Optim., 46 (2010), 543.  doi: 10.1007/s10898-009-9438-7.  Google Scholar

[7]

Y. J. Sun and S. J. Li, Some remarks on a superlinear-singular problem: Estimates for $\lambda^*$, , Nonlinear Anal., 69 (2008), 2636.  doi: 10.1016/j.na.2007.08.037.  Google Scholar

[8]

Y. J. Sun, S. P. Wu and Y. M. Long, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems,, J. Differential Equations, 176 (2001), 511.  doi: 10.1006/jdeq.2000.3973.  Google Scholar

[9]

Y. J. Sun and S. P. Wu, An exact estimate result for a class of singular equations with critical exponents,, J. Funct. Anal., 260 (2011), 1257.  doi: 10.1016/j.jfa.2010.11.018.  Google Scholar

[10]

G. Talenti, Best constant in Sobolev inequality,, Ann. Math. Pure Appl., 110 (1976), 353.  doi: 10.1007/BF02418013.  Google Scholar

[11]

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

show all references

References:
[1]

G. Anello, A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problems,, J. Math. Anal. Appl., 373 (2011), 248.  doi: 10.1016/j.jmaa.2010.07.019.  Google Scholar

[2]

C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions,, J. Differential Equations, 250 (2011), 1876.  doi: 10.1016/j.jde.2010.11.017.  Google Scholar

[3]

J. Graham-Eagle, A variational approach to upper and lower solutions,, IMA J. Appl. Math., 44 (1990), 181.  doi: 10.1093/imamat/44.2.181.  Google Scholar

[4]

X. He and W. Zou, Infinitely many solutions for Kirchhoff-type problems,, Nonlinear Anal., 70 (2009), 1407.  doi: 10.1016/j.na.2008.02.021.  Google Scholar

[5]

D. S. Kang, On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms,, Nonlinear Anal., 68 (2008), 1973.  doi: 10.1016/j.na.2007.01.024.  Google Scholar

[6]

B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters,, J. Global Optim., 46 (2010), 543.  doi: 10.1007/s10898-009-9438-7.  Google Scholar

[7]

Y. J. Sun and S. J. Li, Some remarks on a superlinear-singular problem: Estimates for $\lambda^*$, , Nonlinear Anal., 69 (2008), 2636.  doi: 10.1016/j.na.2007.08.037.  Google Scholar

[8]

Y. J. Sun, S. P. Wu and Y. M. Long, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems,, J. Differential Equations, 176 (2001), 511.  doi: 10.1006/jdeq.2000.3973.  Google Scholar

[9]

Y. J. Sun and S. P. Wu, An exact estimate result for a class of singular equations with critical exponents,, J. Funct. Anal., 260 (2011), 1257.  doi: 10.1016/j.jfa.2010.11.018.  Google Scholar

[10]

G. Talenti, Best constant in Sobolev inequality,, Ann. Math. Pure Appl., 110 (1976), 353.  doi: 10.1007/BF02418013.  Google Scholar

[11]

Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow,, J. Math. Anal. Appl., 317 (2006), 456.  doi: 10.1016/j.jmaa.2005.06.102.  Google Scholar

[1]

Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289

[2]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[3]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[4]

Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132

[5]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[6]

Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007

[7]

Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008

[8]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[9]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[10]

Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561

[11]

To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694

[12]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[13]

A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419

[14]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[15]

Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139

[16]

Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010

[17]

Shoichi Hasegawa. A critical exponent of Joseph-Lundgren type for an Hénon equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1189-1198. doi: 10.3934/cpaa.2017058

[18]

F. D. Araruna, F. O. Matias, M. P. Matos, S. M. S. Souza. Hidden regularity for the Kirchhoff equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1049-1056. doi: 10.3934/cpaa.2008.7.1049

[19]

Eduardo Liz, Manuel Pinto, Gonzalo Robledo, Sergei Trofimchuk, Victor Tkachenko. Wright type delay differential equations with negative Schwarzian. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 309-321. doi: 10.3934/dcds.2003.9.309

[20]

Renato Manfrin. On the global solvability of symmetric hyperbolic systems of Kirchhoff type. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 91-106. doi: 10.3934/dcds.1997.3.91

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]