-
Previous Article
Long-time dynamics of the parabolic $p$-Laplacian equation
- CPAA Home
- This Issue
-
Next Article
Median values, 1-harmonic functions, and functions of least gradient
Multiple positive solutions for Kirchhoff type problems with singularity
1. | Department of Mathematics, University of Chinese Academy of Sciences, Beijing 100049, P.R. China |
2. | Department of Mathematics, Graduate University of Chinese Academy of Sciences, Beijing 100049, China |
References:
[1] |
G. Anello, A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problems, J. Math. Anal. Appl., 373 (2011), 248-251.
doi: 10.1016/j.jmaa.2010.07.019. |
[2] |
C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations, 250 (2011), 1876-1908.
doi: 10.1016/j.jde.2010.11.017. |
[3] |
J. Graham-Eagle, A variational approach to upper and lower solutions, IMA J. Appl. Math., 44 (1990), 181-184.
doi: 10.1093/imamat/44.2.181. |
[4] |
X. He and W. Zou, Infinitely many solutions for Kirchhoff-type problems, Nonlinear Anal., 70 (2009), 1407-1414.
doi: 10.1016/j.na.2008.02.021. |
[5] |
D. S. Kang, On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms, Nonlinear Anal., 68 (2008), 1973-1985.
doi: 10.1016/j.na.2007.01.024. |
[6] |
B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim., 46 (2010), 543-549.
doi: 10.1007/s10898-009-9438-7. |
[7] |
Y. J. Sun and S. J. Li, Some remarks on a superlinear-singular problem: Estimates for $\lambda^*$, Nonlinear Anal., 69 (2008), 2636-2650.
doi: 10.1016/j.na.2007.08.037. |
[8] |
Y. J. Sun, S. P. Wu and Y. M. Long, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations, 176 (2001), 511-531.
doi: 10.1006/jdeq.2000.3973. |
[9] |
Y. J. Sun and S. P. Wu, An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal., 260 (2011), 1257-1284.
doi: 10.1016/j.jfa.2010.11.018. |
[10] |
G. Talenti, Best constant in Sobolev inequality, Ann. Math. Pure Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[11] |
Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
show all references
References:
[1] |
G. Anello, A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problems, J. Math. Anal. Appl., 373 (2011), 248-251.
doi: 10.1016/j.jmaa.2010.07.019. |
[2] |
C. Chen, Y. Kuo and T. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations, 250 (2011), 1876-1908.
doi: 10.1016/j.jde.2010.11.017. |
[3] |
J. Graham-Eagle, A variational approach to upper and lower solutions, IMA J. Appl. Math., 44 (1990), 181-184.
doi: 10.1093/imamat/44.2.181. |
[4] |
X. He and W. Zou, Infinitely many solutions for Kirchhoff-type problems, Nonlinear Anal., 70 (2009), 1407-1414.
doi: 10.1016/j.na.2008.02.021. |
[5] |
D. S. Kang, On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms, Nonlinear Anal., 68 (2008), 1973-1985.
doi: 10.1016/j.na.2007.01.024. |
[6] |
B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim., 46 (2010), 543-549.
doi: 10.1007/s10898-009-9438-7. |
[7] |
Y. J. Sun and S. J. Li, Some remarks on a superlinear-singular problem: Estimates for $\lambda^*$, Nonlinear Anal., 69 (2008), 2636-2650.
doi: 10.1016/j.na.2007.08.037. |
[8] |
Y. J. Sun, S. P. Wu and Y. M. Long, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations, 176 (2001), 511-531.
doi: 10.1006/jdeq.2000.3973. |
[9] |
Y. J. Sun and S. P. Wu, An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal., 260 (2011), 1257-1284.
doi: 10.1016/j.jfa.2010.11.018. |
[10] |
G. Talenti, Best constant in Sobolev inequality, Ann. Math. Pure Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013. |
[11] |
Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317 (2006), 456-463.
doi: 10.1016/j.jmaa.2005.06.102. |
[1] |
Caisheng Chen, Qing Yuan. Existence of solution to $p-$Kirchhoff type problem in $\mathbb{R}^N$ via Nehari manifold. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2289-2303. doi: 10.3934/cpaa.2014.13.2289 |
[2] |
Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857 |
[3] |
Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108 |
[4] |
Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132 |
[5] |
Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773 |
[6] |
Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007 |
[7] |
Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure and Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008 |
[8] |
Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285 |
[9] |
Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143 |
[10] |
Zhijian Yang, Na Feng, Yanan Li. Robust attractors for a Kirchhoff-Boussinesq type equation. Evolution Equations and Control Theory, 2020, 9 (2) : 469-486. doi: 10.3934/eect.2020020 |
[11] |
Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561 |
[12] |
To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694 |
[13] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[14] |
Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations and Control Theory, 2021, 10 (4) : 723-732. doi: 10.3934/eect.2020088 |
[15] |
Die Hu, Xianhua Tang, Qi Zhang. Existence of solutions for a class of quasilinear Schrödinger equation with a Kirchhoff-type. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1071-1091. doi: 10.3934/cpaa.2022010 |
[16] |
A. Pankov. Gap solitons in periodic discrete nonlinear Schrödinger equations II: A generalized Nehari manifold approach. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 419-430. doi: 10.3934/dcds.2007.19.419 |
[17] |
Zhi-Guo Wu, Wen Guan, Da-Bin Wang. Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double potentials. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2495-2528. doi: 10.3934/cpaa.2022058 |
[18] |
Shoichi Hasegawa. A critical exponent of Joseph-Lundgren type for an Hénon equation on the hyperbolic space. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1189-1198. doi: 10.3934/cpaa.2017058 |
[19] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Mostafa Zahri. Theoretical and computational decay results for a memory type wave equation with variable-exponent nonlinearity. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022010 |
[20] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]