March  2013, 12(2): 755-769. doi: 10.3934/cpaa.2013.12.755

The Riemann problem of conservation laws in magnetogasdynamics

1. 

Department of Mathematics, Shanghai University, Shanghai, 200444, China

Received  July 2011 Revised  July 2012 Published  September 2012

In this paper, we study the Riemann problem for a simplified model of one dimensional ideal gas in magnetogasdynamics. By using the characteristic analysis method, we prove the global existence of solutions to the Riemann problem constructively under the Lax entropy condition. The image of contact discontinuity in magnetogasdynamics is a curve with $u=Const.$ in the $(\tau,p,u)$ space. Its projection on the $(p,u)$ plane is a straight line that parallels to the $p$-axis. In contrast with the problem in gas dynamics, the result causes more complicated and difficult than that in gas dynamics.
Citation: Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755
References:
[1]

W. R. Hu, "Universe Magnetogasdynamics" (in Chinese),, Science Press, (1987).   Google Scholar

[2]

D. Q. Li and T. H. Qin, "Physics and Partial Differential Equations" (in Chinese),, Higher Education Press, (2005).   Google Scholar

[3]

H. Cabannes, "Theoretical Magnetofluid Dynamics, in: Applid Mathematics and Mechanics,", Academic Press, (1970).   Google Scholar

[4]

R. Gundersen, "Linearized Analysis of One-dimensional Magnetohydrodynamic Flows,", Springer-Verlag, (1964).   Google Scholar

[5]

R. S. Myong and P. L. Roe, Shock waves and rarefaction waves in magnetohydrodynamics part 1. a model system,, J. Plasma Phys., 58 (1997), 485.  doi: 10.1017/S002237789700593X.  Google Scholar

[6]

R. S. Myong and P. L. Roe, Shock waves and rarefaction waves in magnetohydrodynamics part 2. the MHD system,, J. Plasma Phys., 58 (1997), 521.  doi: 10.1017/S0022377897005941.  Google Scholar

[7]

M. Torrilhon, "Exact Solver and Uniqueness Conditions for Riemann Problem of Ideal Magnetohydrodynamics,", Seminar f\, (2002).   Google Scholar

[8]

T. R. Sekhar and V. D. Sharma, Riemann problem and elementary wave interactions in isentropic magnetogasdynamics,, Nonlinear Analysis: Real World Applications, 11 (2010), 619.  doi: 10.1016/j.nonrwa.2008.10.036.  Google Scholar

[9]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves,", Intersience Publisher, (1999).   Google Scholar

[10]

P. D. Lax, Hyperbolic system of conservation laws II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[11]

J. Glimm, Solutions in the large for nonlinear hyperbolic system of equations,, Comm. Pure Appl. Math., 18 (1963), 697.  doi: 10.1002/cpa.3160180408.  Google Scholar

[12]

T. P. Liu, Existence and uniqueness theorems for Riemann problems,, Trans. Amer. Math. Soc., 212 (1975), 375.  doi: 10.1090/S0002-9947-1975-0380135-2.  Google Scholar

[13]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman, (1989).   Google Scholar

[14]

J. Smollor, "Shock Waves and Reaction Diffusion Equations,", Springer Verlag, (1994).   Google Scholar

[15]

Y. B. Hu and W. C. Sheng, Elementary waves of conservation laws in magnetogasdynamics (in Chinese),, Commun. Appl. Math. Comput., 23 (2009), 49.   Google Scholar

show all references

References:
[1]

W. R. Hu, "Universe Magnetogasdynamics" (in Chinese),, Science Press, (1987).   Google Scholar

[2]

D. Q. Li and T. H. Qin, "Physics and Partial Differential Equations" (in Chinese),, Higher Education Press, (2005).   Google Scholar

[3]

H. Cabannes, "Theoretical Magnetofluid Dynamics, in: Applid Mathematics and Mechanics,", Academic Press, (1970).   Google Scholar

[4]

R. Gundersen, "Linearized Analysis of One-dimensional Magnetohydrodynamic Flows,", Springer-Verlag, (1964).   Google Scholar

[5]

R. S. Myong and P. L. Roe, Shock waves and rarefaction waves in magnetohydrodynamics part 1. a model system,, J. Plasma Phys., 58 (1997), 485.  doi: 10.1017/S002237789700593X.  Google Scholar

[6]

R. S. Myong and P. L. Roe, Shock waves and rarefaction waves in magnetohydrodynamics part 2. the MHD system,, J. Plasma Phys., 58 (1997), 521.  doi: 10.1017/S0022377897005941.  Google Scholar

[7]

M. Torrilhon, "Exact Solver and Uniqueness Conditions for Riemann Problem of Ideal Magnetohydrodynamics,", Seminar f\, (2002).   Google Scholar

[8]

T. R. Sekhar and V. D. Sharma, Riemann problem and elementary wave interactions in isentropic magnetogasdynamics,, Nonlinear Analysis: Real World Applications, 11 (2010), 619.  doi: 10.1016/j.nonrwa.2008.10.036.  Google Scholar

[9]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves,", Intersience Publisher, (1999).   Google Scholar

[10]

P. D. Lax, Hyperbolic system of conservation laws II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[11]

J. Glimm, Solutions in the large for nonlinear hyperbolic system of equations,, Comm. Pure Appl. Math., 18 (1963), 697.  doi: 10.1002/cpa.3160180408.  Google Scholar

[12]

T. P. Liu, Existence and uniqueness theorems for Riemann problems,, Trans. Amer. Math. Soc., 212 (1975), 375.  doi: 10.1090/S0002-9947-1975-0380135-2.  Google Scholar

[13]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman, (1989).   Google Scholar

[14]

J. Smollor, "Shock Waves and Reaction Diffusion Equations,", Springer Verlag, (1994).   Google Scholar

[15]

Y. B. Hu and W. C. Sheng, Elementary waves of conservation laws in magnetogasdynamics (in Chinese),, Commun. Appl. Math. Comput., 23 (2009), 49.   Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[6]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[7]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[10]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[11]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[15]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[16]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]