• Previous Article
    Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity
  • CPAA Home
  • This Issue
  • Next Article
    Some results on two-dimensional Hénon equation with large exponent in nonlinearity
March  2013, 12(2): 815-829. doi: 10.3934/cpaa.2013.12.815

Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania

2. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  September 2011 Revised  January 2012 Published  September 2012

A nonlinear elliptic equation with $p$-Laplacian, concave-convex reaction term depending on a parameter $\lambda>0$, and homogeneous boundary condition, is investigated. A bifurcation result, which describes the set of positive solutions as $\lambda$ varies, is obtained through variational methods combined with truncation and comparison techniques.
Citation: Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure & Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints,, Mem. Amer. Math. Soc., 196 (2008).   Google Scholar

[2]

A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator,, Comm. Partial Differential Equations, 31 (2006), 849.  doi: 10.1080/03605300500394447.  Google Scholar

[4]

D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity,, Bull. Austral. Math. Soc., 77 (2008), 285.  doi: 10.1017/S0004972708000282.  Google Scholar

[5]

L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents,, Nonlinear Anal., 24 (1995), 1639.  doi: 10.1016/0362-546X(94)E0054-K.  Google Scholar

[6]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737.  doi: 10.1017/S0308210509000845.  Google Scholar

[7]

L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis,", Ser. Math. Anal. Appl., 9 (2006).   Google Scholar

[8]

L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Ser. Math. Anal. Appl., 8 (2005).   Google Scholar

[9]

J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations,, Comm. Contemp. Math., 2 (2000), 385.  doi: 10.1142/S0219199700000190.  Google Scholar

[10]

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879.  doi: 10.1016/0362-546X(89)90020-5.  Google Scholar

[11]

S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin,, Tohoku Math. J., 62 (2010), 137.  doi: 10.2748/tmj/1270041030.  Google Scholar

[12]

An Lê, Eigenvalue problems for the $p$-Laplacian,, Nonlinear Anal., 64 (2006), 1057.  doi: 10.1016/j.na.2005.05.056.  Google Scholar

[13]

S. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities,, J. Differential Equations, 185 (2002), 200.  doi: 10.1006/jdeq.2001.4167.  Google Scholar

[14]

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.  doi: 10.1016/j.na.2010.02.037.  Google Scholar

[15]

P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) +\lambda |u|^{p-2}u=0$, , Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[16]

O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz condition,, J. Differential Equations, 245 (2008), 3628.  doi: 10.1016/j.jde.2008.02.035.  Google Scholar

[17]

I. Peral, Some results on quasilinear elliptic equations: growth versus shape,, in, (1998), 153.   Google Scholar

[18]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.  doi: 10.1007/BF01449041.  Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints,, Mem. Amer. Math. Soc., 196 (2008).   Google Scholar

[2]

A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator,, Comm. Partial Differential Equations, 31 (2006), 849.  doi: 10.1080/03605300500394447.  Google Scholar

[4]

D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity,, Bull. Austral. Math. Soc., 77 (2008), 285.  doi: 10.1017/S0004972708000282.  Google Scholar

[5]

L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents,, Nonlinear Anal., 24 (1995), 1639.  doi: 10.1016/0362-546X(94)E0054-K.  Google Scholar

[6]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737.  doi: 10.1017/S0308210509000845.  Google Scholar

[7]

L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis,", Ser. Math. Anal. Appl., 9 (2006).   Google Scholar

[8]

L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Ser. Math. Anal. Appl., 8 (2005).   Google Scholar

[9]

J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations,, Comm. Contemp. Math., 2 (2000), 385.  doi: 10.1142/S0219199700000190.  Google Scholar

[10]

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879.  doi: 10.1016/0362-546X(89)90020-5.  Google Scholar

[11]

S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin,, Tohoku Math. J., 62 (2010), 137.  doi: 10.2748/tmj/1270041030.  Google Scholar

[12]

An Lê, Eigenvalue problems for the $p$-Laplacian,, Nonlinear Anal., 64 (2006), 1057.  doi: 10.1016/j.na.2005.05.056.  Google Scholar

[13]

S. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities,, J. Differential Equations, 185 (2002), 200.  doi: 10.1006/jdeq.2001.4167.  Google Scholar

[14]

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.  doi: 10.1016/j.na.2010.02.037.  Google Scholar

[15]

P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) +\lambda |u|^{p-2}u=0$, , Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[16]

O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz condition,, J. Differential Equations, 245 (2008), 3628.  doi: 10.1016/j.jde.2008.02.035.  Google Scholar

[17]

I. Peral, Some results on quasilinear elliptic equations: growth versus shape,, in, (1998), 153.   Google Scholar

[18]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.  doi: 10.1007/BF01449041.  Google Scholar

[1]

Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107

[2]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[3]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[4]

Yaoping Chen, Jianqing Chen. Existence of multiple positive weak solutions and estimates for extremal values for a class of concave-convex elliptic problems with an inverse-square potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1531-1552. doi: 10.3934/cpaa.2017073

[5]

Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559

[6]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Pairs of positive solutions for $p$--Laplacian equations with combined nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1031-1051. doi: 10.3934/cpaa.2009.8.1031

[7]

Qingfang Wang. Multiple positive solutions of fractional elliptic equations involving concave and convex nonlinearities in $R^N$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1671-1688. doi: 10.3934/cpaa.2016008

[8]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[9]

Boumediene Abdellaoui, Abdelrazek Dieb, Enrico Valdinoci. A nonlocal concave-convex problem with nonlocal mixed boundary data. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1103-1120. doi: 10.3934/cpaa.2018053

[10]

Shouchuan Hu, Nikolas S. Papageorgiou. Positive solutions for resonant (p, q)-equations with concave terms. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2639-2656. doi: 10.3934/cpaa.2018125

[11]

Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002

[12]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[13]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[14]

Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166

[15]

Leszek Gasiński, Nikolaos S. Papageorgiou. A pair of positive solutions for $(p,q)$-equations with combined nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 203-215. doi: 10.3934/cpaa.2014.13.203

[16]

João Marcos do Ó, Uberlandio Severo. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (2) : 621-644. doi: 10.3934/cpaa.2009.8.621

[17]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[18]

Shanming Ji, Jingxue Yin, Yutian Li. Positive periodic solutions of the weighted $p$-Laplacian with nonlinear sources. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2411-2439. doi: 10.3934/dcds.2018100

[19]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[20]

Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (13)

[Back to Top]