• Previous Article
    Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity
  • CPAA Home
  • This Issue
  • Next Article
    Some results on two-dimensional Hénon equation with large exponent in nonlinearity
March  2013, 12(2): 815-829. doi: 10.3934/cpaa.2013.12.815

Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter

1. 

Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania

2. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  September 2011 Revised  January 2012 Published  September 2012

A nonlinear elliptic equation with $p$-Laplacian, concave-convex reaction term depending on a parameter $\lambda>0$, and homogeneous boundary condition, is investigated. A bifurcation result, which describes the set of positive solutions as $\lambda$ varies, is obtained through variational methods combined with truncation and comparison techniques.
Citation: Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure & Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints,, Mem. Amer. Math. Soc., 196 (2008).   Google Scholar

[2]

A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator,, Comm. Partial Differential Equations, 31 (2006), 849.  doi: 10.1080/03605300500394447.  Google Scholar

[4]

D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity,, Bull. Austral. Math. Soc., 77 (2008), 285.  doi: 10.1017/S0004972708000282.  Google Scholar

[5]

L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents,, Nonlinear Anal., 24 (1995), 1639.  doi: 10.1016/0362-546X(94)E0054-K.  Google Scholar

[6]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737.  doi: 10.1017/S0308210509000845.  Google Scholar

[7]

L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis,", Ser. Math. Anal. Appl., 9 (2006).   Google Scholar

[8]

L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Ser. Math. Anal. Appl., 8 (2005).   Google Scholar

[9]

J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations,, Comm. Contemp. Math., 2 (2000), 385.  doi: 10.1142/S0219199700000190.  Google Scholar

[10]

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879.  doi: 10.1016/0362-546X(89)90020-5.  Google Scholar

[11]

S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin,, Tohoku Math. J., 62 (2010), 137.  doi: 10.2748/tmj/1270041030.  Google Scholar

[12]

An Lê, Eigenvalue problems for the $p$-Laplacian,, Nonlinear Anal., 64 (2006), 1057.  doi: 10.1016/j.na.2005.05.056.  Google Scholar

[13]

S. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities,, J. Differential Equations, 185 (2002), 200.  doi: 10.1006/jdeq.2001.4167.  Google Scholar

[14]

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.  doi: 10.1016/j.na.2010.02.037.  Google Scholar

[15]

P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) +\lambda |u|^{p-2}u=0$, , Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[16]

O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz condition,, J. Differential Equations, 245 (2008), 3628.  doi: 10.1016/j.jde.2008.02.035.  Google Scholar

[17]

I. Peral, Some results on quasilinear elliptic equations: growth versus shape,, in, (1998), 153.   Google Scholar

[18]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.  doi: 10.1007/BF01449041.  Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints,, Mem. Amer. Math. Soc., 196 (2008).   Google Scholar

[2]

A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[3]

D. Arcoya and D. Ruiz, The Ambrosetti-Prodi problem for the $p$-Laplace operator,, Comm. Partial Differential Equations, 31 (2006), 849.  doi: 10.1080/03605300500394447.  Google Scholar

[4]

D. Averna, S. A. Marano and D. Motreanu, Multiple solutions for a Dirichlet problem with $p$-Laplacian and set-valued nonlinearity,, Bull. Austral. Math. Soc., 77 (2008), 285.  doi: 10.1017/S0004972708000282.  Google Scholar

[5]

L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents,, Nonlinear Anal., 24 (1995), 1639.  doi: 10.1016/0362-546X(94)E0054-K.  Google Scholar

[6]

G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 737.  doi: 10.1017/S0308210509000845.  Google Scholar

[7]

L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis,", Ser. Math. Anal. Appl., 9 (2006).   Google Scholar

[8]

L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Ser. Math. Anal. Appl., 8 (2005).   Google Scholar

[9]

J. P. Garcia Azorero, J. J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations,, Comm. Contemp. Math., 2 (2000), 385.  doi: 10.1142/S0219199700000190.  Google Scholar

[10]

M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents,, Nonlinear Anal., 13 (1989), 879.  doi: 10.1016/0362-546X(89)90020-5.  Google Scholar

[11]

S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin,, Tohoku Math. J., 62 (2010), 137.  doi: 10.2748/tmj/1270041030.  Google Scholar

[12]

An Lê, Eigenvalue problems for the $p$-Laplacian,, Nonlinear Anal., 64 (2006), 1057.  doi: 10.1016/j.na.2005.05.056.  Google Scholar

[13]

S. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities,, J. Differential Equations, 185 (2002), 200.  doi: 10.1006/jdeq.2001.4167.  Google Scholar

[14]

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.  doi: 10.1016/j.na.2010.02.037.  Google Scholar

[15]

P. Lindqvist, On the equation div$(|\nabla u|^{p-2}\nabla u) +\lambda |u|^{p-2}u=0$, , Proc. Amer. Math. Soc., 109 (1990), 157.  doi: 10.1090/S0002-9939-1990-1007505-7.  Google Scholar

[16]

O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz condition,, J. Differential Equations, 245 (2008), 3628.  doi: 10.1016/j.jde.2008.02.035.  Google Scholar

[17]

I. Peral, Some results on quasilinear elliptic equations: growth versus shape,, in, (1998), 153.   Google Scholar

[18]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.  doi: 10.1007/BF01449041.  Google Scholar

[1]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[2]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[5]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[9]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[10]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[11]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[12]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[13]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[14]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[15]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (127)
  • HTML views (0)
  • Cited by (29)

[Back to Top]