March  2013, 12(2): 923-937. doi: 10.3934/cpaa.2013.12.923

Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion

1. 

School of Mathematical Sciences, Anhui University, Hefei 230601, China, China

2. 

School of Mathematical Science, Anhui University, Hefei 230039

Received  January 2012 Revised  January 2012 Published  September 2012

This article is concerned with the blow-up criterion for smooth solutions of three-dimensional Boussinesq equations with zero diffusion. It is shown that if the velocity field $u(x,t)$ satisfies \begin{eqnarray*} u\in L^p(0,T_1;B^r_{q,\infty}(R^3)),\quad \frac{2}{p}+\frac{3}{q}=1+r,\quad \frac{3}{1+r}< q \leq \infty, \quad -1 < r \leq 1, \end{eqnarray*} then the solution can be continually extended to the interval $(0,T)$ for some $T>T_1$.
Citation: Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923
References:
[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system,, J. Differential Equations, 233 (2007), 199.  doi: 10.1016/j.jde.2006.10.008.  Google Scholar

[2]

H. Abidi, T. Hmidi and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system,, Discrete and Continuous Dynamical Systems, 29 (2011), 737.  doi: 10.3934/dcds.2011.29.737.  Google Scholar

[3]

J.-M. Bony, Calcul symbolique et propagation des singulariteś pour lesequations aux deŕiveés partielles non lineáires,, Ann. Sci. E\'cde Norm. Sup., 14 (1981), 209.   Google Scholar

[4]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[5]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[6]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[7]

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations,, Proc. Roy. Soc. Edinburgh, 127 (1997), 935.  doi: 10.1017/S0308210500026810.  Google Scholar

[8]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[9]

Q. Chen and Z. Zhang, Space-time estimates in the Besov spaces and the Navier-Stokes equations,, Methods Appl. Anal., 13 (2006), 107.   Google Scholar

[10]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B_{\infty ,\infty}^{-1}$, , Arch. Rational Mech. Anal., 195 (2010), 159.  doi: s00205-009-0265-2.  Google Scholar

[11]

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces,, Phys. D, 237 (2008), 1444.  doi: 10.1016/j.physd.2008.03.034.  Google Scholar

[12]

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data,, Comm. Math. Phys., 290 (2009), 1.  doi: 10.1007/s00220-009-0821-5.  Google Scholar

[13]

B.-Q Dong, J. Song and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity (in Chinese),, Sci Sin Math, 40 (2010), 1225.  doi: 10.1360/012010-567.  Google Scholar

[14]

B.-Q. Dong and Z. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components,, Nonlinear Analysis: Real World Applications \textbf{11} (2010), 11 (2010), 2415.  doi: 10.1016/j.nonrwa.2009.07.013.  Google Scholar

[15]

B.-Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Meth. Appl. Sci. \textbf{34} (2011), 34 (2011), 595.  doi: 10.1002/mma.1383.  Google Scholar

[16]

J. Fan and T. Ozawa, Regularity criteria for the 3D density Boussinesq equations,, Nonlinearity, 22 (2009), 553.  doi: 10.1088/0951-7715/22/3/003.  Google Scholar

[17]

J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity,, Appl. Math. Lett., 22 (2009), 802.  doi: 10.1016/j.aml.2008.06.041.  Google Scholar

[18]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[19]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data,, Ann. I. H. Poincar\'e-AN., 27 (2010), 1227.  doi: 10.1016/j.anihpc.2010.06.001.  Google Scholar

[20]

T.-Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations,, Discrete Contin. Dyn. Syst., 12 (2005), 1.   Google Scholar

[21]

N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations,, Math. Methods Appl. Sci., 9 (1999), 1323.   Google Scholar

[22]

Y. Jia, W. Zhang and B.-Q. Dong, Remarks on the regularity criterion of the 3D micropolar fluid equations in terms of the pressure,, Appl. Math. Letters, 24 (2011), 199.  doi: 10.1016/j.aml.2010.09.003.  Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[24]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem,", Chapman Hall/CRC, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[25]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", in: Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[26]

J. Pedlosky, "Geophysical Fluid Dynamics,", Springer-Verlag, (1987).   Google Scholar

[27]

H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces,, Nonlinear Analysis TMA, 73 (2010), 806.  doi: 10.1016/j.na.2010.04.021.  Google Scholar

[28]

H. Triebel, "Theory of Function Spaces,", Birkh\, ().  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[29]

X. Xu, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion,, Nonlinear Analysis TMA, 72 (2010), 677.  doi: 10.1016/j.na.2009.07.008.  Google Scholar

[30]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

show all references

References:
[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system,, J. Differential Equations, 233 (2007), 199.  doi: 10.1016/j.jde.2006.10.008.  Google Scholar

[2]

H. Abidi, T. Hmidi and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system,, Discrete and Continuous Dynamical Systems, 29 (2011), 737.  doi: 10.3934/dcds.2011.29.737.  Google Scholar

[3]

J.-M. Bony, Calcul symbolique et propagation des singulariteś pour lesequations aux deŕiveés partielles non lineáires,, Ann. Sci. E\'cde Norm. Sup., 14 (1981), 209.   Google Scholar

[4]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919.  doi: 10.1007/s00205-011-0439-6.  Google Scholar

[5]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[6]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[7]

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations,, Proc. Roy. Soc. Edinburgh, 127 (1997), 935.  doi: 10.1017/S0308210500026810.  Google Scholar

[8]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[9]

Q. Chen and Z. Zhang, Space-time estimates in the Besov spaces and the Navier-Stokes equations,, Methods Appl. Anal., 13 (2006), 107.   Google Scholar

[10]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B_{\infty ,\infty}^{-1}$, , Arch. Rational Mech. Anal., 195 (2010), 159.  doi: s00205-009-0265-2.  Google Scholar

[11]

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces,, Phys. D, 237 (2008), 1444.  doi: 10.1016/j.physd.2008.03.034.  Google Scholar

[12]

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data,, Comm. Math. Phys., 290 (2009), 1.  doi: 10.1007/s00220-009-0821-5.  Google Scholar

[13]

B.-Q Dong, J. Song and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity (in Chinese),, Sci Sin Math, 40 (2010), 1225.  doi: 10.1360/012010-567.  Google Scholar

[14]

B.-Q. Dong and Z. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components,, Nonlinear Analysis: Real World Applications \textbf{11} (2010), 11 (2010), 2415.  doi: 10.1016/j.nonrwa.2009.07.013.  Google Scholar

[15]

B.-Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Meth. Appl. Sci. \textbf{34} (2011), 34 (2011), 595.  doi: 10.1002/mma.1383.  Google Scholar

[16]

J. Fan and T. Ozawa, Regularity criteria for the 3D density Boussinesq equations,, Nonlinearity, 22 (2009), 553.  doi: 10.1088/0951-7715/22/3/003.  Google Scholar

[17]

J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity,, Appl. Math. Lett., 22 (2009), 802.  doi: 10.1016/j.aml.2008.06.041.  Google Scholar

[18]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[19]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data,, Ann. I. H. Poincar\'e-AN., 27 (2010), 1227.  doi: 10.1016/j.anihpc.2010.06.001.  Google Scholar

[20]

T.-Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations,, Discrete Contin. Dyn. Syst., 12 (2005), 1.   Google Scholar

[21]

N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations,, Math. Methods Appl. Sci., 9 (1999), 1323.   Google Scholar

[22]

Y. Jia, W. Zhang and B.-Q. Dong, Remarks on the regularity criterion of the 3D micropolar fluid equations in terms of the pressure,, Appl. Math. Letters, 24 (2011), 199.  doi: 10.1016/j.aml.2010.09.003.  Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.  doi: 10.1002/cpa.3160410704.  Google Scholar

[24]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem,", Chapman Hall/CRC, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[25]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", in: Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[26]

J. Pedlosky, "Geophysical Fluid Dynamics,", Springer-Verlag, (1987).   Google Scholar

[27]

H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces,, Nonlinear Analysis TMA, 73 (2010), 806.  doi: 10.1016/j.na.2010.04.021.  Google Scholar

[28]

H. Triebel, "Theory of Function Spaces,", Birkh\, ().  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[29]

X. Xu, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion,, Nonlinear Analysis TMA, 72 (2010), 677.  doi: 10.1016/j.na.2009.07.008.  Google Scholar

[30]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[6]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[9]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[10]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[11]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[12]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[15]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[16]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]