March  2013, 12(2): 923-937. doi: 10.3934/cpaa.2013.12.923

Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion

1. 

School of Mathematical Sciences, Anhui University, Hefei 230601, China, China

2. 

School of Mathematical Science, Anhui University, Hefei 230039

Received  January 2012 Revised  January 2012 Published  September 2012

This article is concerned with the blow-up criterion for smooth solutions of three-dimensional Boussinesq equations with zero diffusion. It is shown that if the velocity field $u(x,t)$ satisfies \begin{eqnarray*} u\in L^p(0,T_1;B^r_{q,\infty}(R^3)),\quad \frac{2}{p}+\frac{3}{q}=1+r,\quad \frac{3}{1+r}< q \leq \infty, \quad -1 < r \leq 1, \end{eqnarray*} then the solution can be continually extended to the interval $(0,T)$ for some $T>T_1$.
Citation: Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure and Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923
References:
[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Differential Equations, 233 (2007), 199-220. doi: 10.1016/j.jde.2006.10.008.

[2]

H. Abidi, T. Hmidi and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete and Continuous Dynamical Systems, 29 (2011), 737-756. doi: 10.3934/dcds.2011.29.737.

[3]

J.-M. Bony, Calcul symbolique et propagation des singulariteś pour lesequations aux deŕiveés partielles non lineáires, Ann. Sci. Ećde Norm. Sup., 14 (1981), 209-246.

[4]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Rational Mech. Anal., 202 (2011), 919-932. doi: 10.1007/s00205-011-0439-6.

[5]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274. doi: 10.1016/j.jde.2009.09.020.

[6]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513. doi: 10.1016/j.aim.2005.05.001.

[7]

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh, Sect. A, 127 (1997), 935-946. doi: 10.1017/S0308210500026810.

[8]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930. doi: 10.1007/s00220-008-0545-y.

[9]

Q. Chen and Z. Zhang, Space-time estimates in the Besov spaces and the Navier-Stokes equations, Methods Appl. Anal., 13 (2006), 107-122.

[10]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B_{\infty ,\infty}^{-1}$, Arch. Rational Mech. Anal., 195 (2010), 159-169. doi: s00205-009-0265-2.

[11]

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Phys. D, 237 (2008), 1444-1460. doi: 10.1016/j.physd.2008.03.034.

[12]

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Comm. Math. Phys., 290 (2009), 1-14. doi: 10.1007/s00220-009-0821-5.

[13]

B.-Q Dong, J. Song and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity (in Chinese), Sci Sin Math, 40 (2010), 1225-1236. doi: 10.1360/012010-567.

[14]

B.-Q. Dong and Z. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Analysis: Real World Applications 11 (2010), 2415-2421. doi: 10.1016/j.nonrwa.2009.07.013.

[15]

B.-Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows, Math. Meth. Appl. Sci. 34 (2011), 595-606. doi: 10.1002/mma.1383.

[16]

J. Fan and T. Ozawa, Regularity criteria for the 3D density Boussinesq equations, Nonlinearity, 22 (2009), 553-568. doi: 10.1088/0951-7715/22/3/003.

[17]

J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity, Appl. Math. Lett., 22 (2009), 802-805. doi: 10.1016/j.aml.2008.06.041.

[18]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254. doi: 10.1016/j.jde.2004.07.002.

[19]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. I. H. Poincaré-AN., 27 (2010), 1227-1246. doi: 10.1016/j.anihpc.2010.06.001.

[20]

T.-Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.

[21]

N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations, Math. Methods Appl. Sci., 9 (1999), 1323-1332.

[22]

Y. Jia, W. Zhang and B.-Q. Dong, Remarks on the regularity criterion of the 3D micropolar fluid equations in terms of the pressure, Appl. Math. Letters, 24 (2011), 199-203. doi: 10.1016/j.aml.2010.09.003.

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[24]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Chapman Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.

[25]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean," in: Courant Lecture Notes in Mathematics, vol. 9, AMS/CIMS, 2003.

[26]

J. Pedlosky, "Geophysical Fluid Dynamics," Springer-Verlag, New York, 1987.

[27]

H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces, Nonlinear Analysis TMA, 73 (2010), 806-815. doi: 10.1016/j.na.2010.04.021.

[28]

H. Triebel, "Theory of Function Spaces," Birkhäuser Verlag, Basel-Boston,1983. doi: 10.1007/978-3-0346-0416-1.

[29]

X. Xu, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion, Nonlinear Analysis TMA, 72 (2010), 677-681. doi: 10.1016/j.na.2009.07.008.

[30]

Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886. doi: 10.3934/dcds.2005.12.881.

show all references

References:
[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Differential Equations, 233 (2007), 199-220. doi: 10.1016/j.jde.2006.10.008.

[2]

H. Abidi, T. Hmidi and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete and Continuous Dynamical Systems, 29 (2011), 737-756. doi: 10.3934/dcds.2011.29.737.

[3]

J.-M. Bony, Calcul symbolique et propagation des singulariteś pour lesequations aux deŕiveés partielles non lineáires, Ann. Sci. Ećde Norm. Sup., 14 (1981), 209-246.

[4]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Rational Mech. Anal., 202 (2011), 919-932. doi: 10.1007/s00205-011-0439-6.

[5]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential Equations, 248 (2010), 2263-2274. doi: 10.1016/j.jde.2009.09.020.

[6]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513. doi: 10.1016/j.aim.2005.05.001.

[7]

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh, Sect. A, 127 (1997), 935-946. doi: 10.1017/S0308210500026810.

[8]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930. doi: 10.1007/s00220-008-0545-y.

[9]

Q. Chen and Z. Zhang, Space-time estimates in the Besov spaces and the Navier-Stokes equations, Methods Appl. Anal., 13 (2006), 107-122.

[10]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B_{\infty ,\infty}^{-1}$, Arch. Rational Mech. Anal., 195 (2010), 159-169. doi: s00205-009-0265-2.

[11]

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Phys. D, 237 (2008), 1444-1460. doi: 10.1016/j.physd.2008.03.034.

[12]

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data, Comm. Math. Phys., 290 (2009), 1-14. doi: 10.1007/s00220-009-0821-5.

[13]

B.-Q Dong, J. Song and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity (in Chinese), Sci Sin Math, 40 (2010), 1225-1236. doi: 10.1360/012010-567.

[14]

B.-Q. Dong and Z. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Analysis: Real World Applications 11 (2010), 2415-2421. doi: 10.1016/j.nonrwa.2009.07.013.

[15]

B.-Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows, Math. Meth. Appl. Sci. 34 (2011), 595-606. doi: 10.1002/mma.1383.

[16]

J. Fan and T. Ozawa, Regularity criteria for the 3D density Boussinesq equations, Nonlinearity, 22 (2009), 553-568. doi: 10.1088/0951-7715/22/3/003.

[17]

J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity, Appl. Math. Lett., 22 (2009), 802-805. doi: 10.1016/j.aml.2008.06.041.

[18]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254. doi: 10.1016/j.jde.2004.07.002.

[19]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. I. H. Poincaré-AN., 27 (2010), 1227-1246. doi: 10.1016/j.anihpc.2010.06.001.

[20]

T.-Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.

[21]

N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations, Math. Methods Appl. Sci., 9 (1999), 1323-1332.

[22]

Y. Jia, W. Zhang and B.-Q. Dong, Remarks on the regularity criterion of the 3D micropolar fluid equations in terms of the pressure, Appl. Math. Letters, 24 (2011), 199-203. doi: 10.1016/j.aml.2010.09.003.

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704.

[24]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem," Chapman Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.

[25]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean," in: Courant Lecture Notes in Mathematics, vol. 9, AMS/CIMS, 2003.

[26]

J. Pedlosky, "Geophysical Fluid Dynamics," Springer-Verlag, New York, 1987.

[27]

H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces, Nonlinear Analysis TMA, 73 (2010), 806-815. doi: 10.1016/j.na.2010.04.021.

[28]

H. Triebel, "Theory of Function Spaces," Birkhäuser Verlag, Basel-Boston,1983. doi: 10.1007/978-3-0346-0416-1.

[29]

X. Xu, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion, Nonlinear Analysis TMA, 72 (2010), 677-681. doi: 10.1016/j.na.2009.07.008.

[30]

Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886. doi: 10.3934/dcds.2005.12.881.

[1]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[2]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[3]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[4]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[5]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[6]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[7]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[8]

Jeongho Kim, Weiyuan Zou. Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes equations in the whole domain. Kinetic and Related Models, 2020, 13 (3) : 623-651. doi: 10.3934/krm.2020021

[9]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[10]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[11]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure and Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[12]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic and Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[13]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[14]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[15]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[16]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[17]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[18]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[19]

Yue Cao. Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28 (1) : 27-46. doi: 10.3934/era.2020003

[20]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]