March  2013, 12(2): 923-937. doi: 10.3934/cpaa.2013.12.923

Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion

1. 

School of Mathematical Sciences, Anhui University, Hefei 230601, China, China

2. 

School of Mathematical Science, Anhui University, Hefei 230039

Received  January 2012 Revised  January 2012 Published  September 2012

This article is concerned with the blow-up criterion for smooth solutions of three-dimensional Boussinesq equations with zero diffusion. It is shown that if the velocity field $u(x,t)$ satisfies \begin{eqnarray*} u\in L^p(0,T_1;B^r_{q,\infty}(R^3)),\quad \frac{2}{p}+\frac{3}{q}=1+r,\quad \frac{3}{1+r}< q \leq \infty, \quad -1 < r \leq 1, \end{eqnarray*} then the solution can be continually extended to the interval $(0,T)$ for some $T>T_1$.
Citation: Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923
References:
[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system,, J. Differential Equations, 233 (2007), 199. doi: 10.1016/j.jde.2006.10.008. Google Scholar

[2]

H. Abidi, T. Hmidi and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system,, Discrete and Continuous Dynamical Systems, 29 (2011), 737. doi: 10.3934/dcds.2011.29.737. Google Scholar

[3]

J.-M. Bony, Calcul symbolique et propagation des singulariteś pour lesequations aux deŕiveés partielles non lineáires,, Ann. Sci. E\'cde Norm. Sup., 14 (1981), 209. Google Scholar

[4]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919. doi: 10.1007/s00205-011-0439-6. Google Scholar

[5]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263. doi: 10.1016/j.jde.2009.09.020. Google Scholar

[6]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497. doi: 10.1016/j.aim.2005.05.001. Google Scholar

[7]

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations,, Proc. Roy. Soc. Edinburgh, 127 (1997), 935. doi: 10.1017/S0308210500026810. Google Scholar

[8]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919. doi: 10.1007/s00220-008-0545-y. Google Scholar

[9]

Q. Chen and Z. Zhang, Space-time estimates in the Besov spaces and the Navier-Stokes equations,, Methods Appl. Anal., 13 (2006), 107. Google Scholar

[10]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B_{\infty ,\infty}^{-1}$, , Arch. Rational Mech. Anal., 195 (2010), 159. doi: s00205-009-0265-2. Google Scholar

[11]

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces,, Phys. D, 237 (2008), 1444. doi: 10.1016/j.physd.2008.03.034. Google Scholar

[12]

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data,, Comm. Math. Phys., 290 (2009), 1. doi: 10.1007/s00220-009-0821-5. Google Scholar

[13]

B.-Q Dong, J. Song and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity (in Chinese),, Sci Sin Math, 40 (2010), 1225. doi: 10.1360/012010-567. Google Scholar

[14]

B.-Q. Dong and Z. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components,, Nonlinear Analysis: Real World Applications \textbf{11} (2010), 11 (2010), 2415. doi: 10.1016/j.nonrwa.2009.07.013. Google Scholar

[15]

B.-Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Meth. Appl. Sci. \textbf{34} (2011), 34 (2011), 595. doi: 10.1002/mma.1383. Google Scholar

[16]

J. Fan and T. Ozawa, Regularity criteria for the 3D density Boussinesq equations,, Nonlinearity, 22 (2009), 553. doi: 10.1088/0951-7715/22/3/003. Google Scholar

[17]

J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity,, Appl. Math. Lett., 22 (2009), 802. doi: 10.1016/j.aml.2008.06.041. Google Scholar

[18]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235. doi: 10.1016/j.jde.2004.07.002. Google Scholar

[19]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data,, Ann. I. H. Poincar\'e-AN., 27 (2010), 1227. doi: 10.1016/j.anihpc.2010.06.001. Google Scholar

[20]

T.-Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations,, Discrete Contin. Dyn. Syst., 12 (2005), 1. Google Scholar

[21]

N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations,, Math. Methods Appl. Sci., 9 (1999), 1323. Google Scholar

[22]

Y. Jia, W. Zhang and B.-Q. Dong, Remarks on the regularity criterion of the 3D micropolar fluid equations in terms of the pressure,, Appl. Math. Letters, 24 (2011), 199. doi: 10.1016/j.aml.2010.09.003. Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891. doi: 10.1002/cpa.3160410704. Google Scholar

[24]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem,", Chapman Hall/CRC, (2002). doi: 10.1201/9781420035674. Google Scholar

[25]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", in: Courant Lecture Notes in Mathematics, (2003). Google Scholar

[26]

J. Pedlosky, "Geophysical Fluid Dynamics,", Springer-Verlag, (1987). Google Scholar

[27]

H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces,, Nonlinear Analysis TMA, 73 (2010), 806. doi: 10.1016/j.na.2010.04.021. Google Scholar

[28]

H. Triebel, "Theory of Function Spaces,", Birkh\, (). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[29]

X. Xu, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion,, Nonlinear Analysis TMA, 72 (2010), 677. doi: 10.1016/j.na.2009.07.008. Google Scholar

[30]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881. doi: 10.3934/dcds.2005.12.881. Google Scholar

show all references

References:
[1]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system,, J. Differential Equations, 233 (2007), 199. doi: 10.1016/j.jde.2006.10.008. Google Scholar

[2]

H. Abidi, T. Hmidi and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system,, Discrete and Continuous Dynamical Systems, 29 (2011), 737. doi: 10.3934/dcds.2011.29.737. Google Scholar

[3]

J.-M. Bony, Calcul symbolique et propagation des singulariteś pour lesequations aux deŕiveés partielles non lineáires,, Ann. Sci. E\'cde Norm. Sup., 14 (1981), 209. Google Scholar

[4]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919. doi: 10.1007/s00205-011-0439-6. Google Scholar

[5]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263. doi: 10.1016/j.jde.2009.09.020. Google Scholar

[6]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497. doi: 10.1016/j.aim.2005.05.001. Google Scholar

[7]

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations,, Proc. Roy. Soc. Edinburgh, 127 (1997), 935. doi: 10.1017/S0308210500026810. Google Scholar

[8]

Q. Chen, C. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous Magneto-Hydrodynamics equations,, Comm. Math. Phys., 284 (2008), 919. doi: 10.1007/s00220-008-0545-y. Google Scholar

[9]

Q. Chen and Z. Zhang, Space-time estimates in the Besov spaces and the Navier-Stokes equations,, Methods Appl. Anal., 13 (2006), 107. Google Scholar

[10]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B_{\infty ,\infty}^{-1}$, , Arch. Rational Mech. Anal., 195 (2010), 159. doi: s00205-009-0265-2. Google Scholar

[11]

R. Danchin and M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces,, Phys. D, 237 (2008), 1444. doi: 10.1016/j.physd.2008.03.034. Google Scholar

[12]

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data,, Comm. Math. Phys., 290 (2009), 1. doi: 10.1007/s00220-009-0821-5. Google Scholar

[13]

B.-Q Dong, J. Song and W. Zhang, Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity (in Chinese),, Sci Sin Math, 40 (2010), 1225. doi: 10.1360/012010-567. Google Scholar

[14]

B.-Q. Dong and Z. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components,, Nonlinear Analysis: Real World Applications \textbf{11} (2010), 11 (2010), 2415. doi: 10.1016/j.nonrwa.2009.07.013. Google Scholar

[15]

B.-Q. Dong, Y. Jia and Z.-M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows,, Math. Meth. Appl. Sci. \textbf{34} (2011), 34 (2011), 595. doi: 10.1002/mma.1383. Google Scholar

[16]

J. Fan and T. Ozawa, Regularity criteria for the 3D density Boussinesq equations,, Nonlinearity, 22 (2009), 553. doi: 10.1088/0951-7715/22/3/003. Google Scholar

[17]

J. Fan and Y. Zhou, A note on regularity criterion for the 3D Boussinesq system with partial viscosity,, Appl. Math. Lett., 22 (2009), 802. doi: 10.1016/j.aml.2008.06.041. Google Scholar

[18]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations,, J. Differential Equations, 213 (2005), 235. doi: 10.1016/j.jde.2004.07.002. Google Scholar

[19]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data,, Ann. I. H. Poincar\'e-AN., 27 (2010), 1227. doi: 10.1016/j.anihpc.2010.06.001. Google Scholar

[20]

T.-Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations,, Discrete Contin. Dyn. Syst., 12 (2005), 1. Google Scholar

[21]

N. Ishimura and H. Morimoto, Remarks on the blow-up criterion for the 3D Boussinesq equations,, Math. Methods Appl. Sci., 9 (1999), 1323. Google Scholar

[22]

Y. Jia, W. Zhang and B.-Q. Dong, Remarks on the regularity criterion of the 3D micropolar fluid equations in terms of the pressure,, Appl. Math. Letters, 24 (2011), 199. doi: 10.1016/j.aml.2010.09.003. Google Scholar

[23]

T. Kato and G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891. doi: 10.1002/cpa.3160410704. Google Scholar

[24]

P. G. Lemarié-Rieusset, "Recent Developments in the Navier-Stokes Problem,", Chapman Hall/CRC, (2002). doi: 10.1201/9781420035674. Google Scholar

[25]

A. Majda, "Introduction to PDEs and Waves for the Atmosphere and Ocean,", in: Courant Lecture Notes in Mathematics, (2003). Google Scholar

[26]

J. Pedlosky, "Geophysical Fluid Dynamics,", Springer-Verlag, (1987). Google Scholar

[27]

H. Qiu, Y. Du and Z. Yao, A blow-up criterion for 3D Boussinesq equations in Besov spaces,, Nonlinear Analysis TMA, 73 (2010), 806. doi: 10.1016/j.na.2010.04.021. Google Scholar

[28]

H. Triebel, "Theory of Function Spaces,", Birkh\, (). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[29]

X. Xu, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion,, Nonlinear Analysis TMA, 72 (2010), 677. doi: 10.1016/j.na.2009.07.008. Google Scholar

[30]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, Discrete Contin. Dyn. Syst., 12 (2005), 881. doi: 10.3934/dcds.2005.12.881. Google Scholar

[1]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[2]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[3]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[4]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[5]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[6]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[7]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[8]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[9]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[10]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[11]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[12]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[13]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[14]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[15]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

[16]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[17]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[18]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[19]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[20]

Pablo Álvarez-Caudevilla, Jonathan D. Evans, Victor A. Galaktionov. Gradient blow-up for a fourth-order quasilinear Boussinesq-type equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3913-3938. doi: 10.3934/dcds.2018170

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]