March  2013, 12(2): 973-984. doi: 10.3934/cpaa.2013.12.973

Decay of solutions to fractal parabolic conservation laws with large initial data

1. 

Department of Mathematics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China, China

Received  October 2011 Revised  February 2012 Published  September 2012

In this paper, we study the time-asymptotic behavior of solutions to the Cauchy problem for multi-dimensional parabolic conservation laws with fractional dissipation. For arbitrarily large initial data, we obtain the optimal decay rates in $L^2$ and homogeneous Sobolev spaces for solutions to the equation with the power of Laplacian $\frac{1}{2} < \alpha \le 1$ by using the time-frequency decomposition method and the energy method. The argument is based on a maximum principle.
Citation: Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure and Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973
References:
[1]

P. Biler, T. Funaki and W. Woyczyński, Fractal Burgers equations, J. Differential Equations, 148 (1998), 9-46. doi: 10.1006/jdeq.1998.3458.

[2]

P. Biler, G. Karch and W. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré, 18 (2001), 613-637. doi: 10.1016/S0294-1449(01)00080-4.

[3]

T. Cazenave, "Semilinear Schrödinger Equation," Courant Lecture Notes in Math. 10, Courant Ins. Math. Sci. and Amer. Math. Soc., 2003.

[4]

C. Chicone, "Ordinary Differential Equations with Applications," 2nd edition, Texts in Applied Math. 34, Springer-Verlag, New York, 2006.

[5]

P. Constantin, D. Córdoba and J. Wu, On the critical dissipative quasi-geostrophic equations, Indiana Univ. Math. J., 50 (2001), 97-107. doi: 10.1512/iumj.2001.50.2153.

[6]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948. doi: 10.1137/S0036141098337333.

[7]

A. Cródoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.

[8]

J. Droniou, T. Gallouët and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3 (2003), 499-521. doi: 10.1007/s00028-003-0503-1.

[9]

J. Han and W. Wang, Decay estimates and the application in the stability for the solutions to the subcritical dissipative quasi-geostrophic equations, preprint, 2009.

[10]

E. Hopf, The partial differential equation $u_t+uu_x=\mu u_{x x}$, Comm. Pure Appl. Math., 3 (1950), 201-230. doi: 10.1002/cpa.3160030302.

[11]

N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12 (2002), 355-379. doi: 10.1007/s00039-002-8250-z.

[12]

D. B. Kotlow, Quasilinear parabolic equations and first order quasilinear conservation laws with bad Cauchy data, J. Math. Anal. Appl., 35 (1971), 563-576. doi: 10.1016/0022-247X(71)90204-6.

[13]

T.-T. Li and Y.-M. Chen, "Nonlinear Evolution Equations," in Chinese, Science Press, 1989.

[14]

S. Resnick, "Dynamical Problems in Non-linear Advective Partial Differential Equations," Ph.D. thesis, University of Chicago, 1995.

[15]

M. E. Schonbek, Decay of solution to parabolic conservation laws, Comm. Partial Differential Equations, 7 (1980), 449-473. doi: 10.1080/0360530800882145.

[16]

M. E. Schonbek, Uniform decay rates for parabolic conservation laws, Nonlinear Anal., 10 (1986), 943-956. doi: 10.1016/0362-546X(86)90080-5.

[17]

M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal., 35 (2003), 357-375. doi: 10.1137/S0036141002409362.

[18]

W. Wang and L. Yu, Decay of solutions to parabolic conservation laws with large initial data, preprint, 2009.

show all references

References:
[1]

P. Biler, T. Funaki and W. Woyczyński, Fractal Burgers equations, J. Differential Equations, 148 (1998), 9-46. doi: 10.1006/jdeq.1998.3458.

[2]

P. Biler, G. Karch and W. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré, 18 (2001), 613-637. doi: 10.1016/S0294-1449(01)00080-4.

[3]

T. Cazenave, "Semilinear Schrödinger Equation," Courant Lecture Notes in Math. 10, Courant Ins. Math. Sci. and Amer. Math. Soc., 2003.

[4]

C. Chicone, "Ordinary Differential Equations with Applications," 2nd edition, Texts in Applied Math. 34, Springer-Verlag, New York, 2006.

[5]

P. Constantin, D. Córdoba and J. Wu, On the critical dissipative quasi-geostrophic equations, Indiana Univ. Math. J., 50 (2001), 97-107. doi: 10.1512/iumj.2001.50.2153.

[6]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948. doi: 10.1137/S0036141098337333.

[7]

A. Cródoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.

[8]

J. Droniou, T. Gallouët and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3 (2003), 499-521. doi: 10.1007/s00028-003-0503-1.

[9]

J. Han and W. Wang, Decay estimates and the application in the stability for the solutions to the subcritical dissipative quasi-geostrophic equations, preprint, 2009.

[10]

E. Hopf, The partial differential equation $u_t+uu_x=\mu u_{x x}$, Comm. Pure Appl. Math., 3 (1950), 201-230. doi: 10.1002/cpa.3160030302.

[11]

N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12 (2002), 355-379. doi: 10.1007/s00039-002-8250-z.

[12]

D. B. Kotlow, Quasilinear parabolic equations and first order quasilinear conservation laws with bad Cauchy data, J. Math. Anal. Appl., 35 (1971), 563-576. doi: 10.1016/0022-247X(71)90204-6.

[13]

T.-T. Li and Y.-M. Chen, "Nonlinear Evolution Equations," in Chinese, Science Press, 1989.

[14]

S. Resnick, "Dynamical Problems in Non-linear Advective Partial Differential Equations," Ph.D. thesis, University of Chicago, 1995.

[15]

M. E. Schonbek, Decay of solution to parabolic conservation laws, Comm. Partial Differential Equations, 7 (1980), 449-473. doi: 10.1080/0360530800882145.

[16]

M. E. Schonbek, Uniform decay rates for parabolic conservation laws, Nonlinear Anal., 10 (1986), 943-956. doi: 10.1016/0362-546X(86)90080-5.

[17]

M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal., 35 (2003), 357-375. doi: 10.1137/S0036141002409362.

[18]

W. Wang and L. Yu, Decay of solutions to parabolic conservation laws with large initial data, preprint, 2009.

[1]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic and Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[2]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

[3]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure and Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[4]

Wei-Xi Li, Lvqiao Liu. Gelfand-Shilov smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off. Kinetic and Related Models, 2020, 13 (5) : 1029-1046. doi: 10.3934/krm.2020036

[5]

Carey Caginalp. A survey of results on conservation laws with deterministic and random initial data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2043-2069. doi: 10.3934/dcdsb.2018225

[6]

Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154

[7]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[8]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[9]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[10]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[11]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

[12]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[13]

Shuai Liu, Yuzhu Wang. Optimal time-decay rate of global classical solutions to the generalized compressible Oldroyd-B model. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021041

[14]

Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203

[15]

Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119

[16]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[17]

Francis Ribaud. Semilinear parabolic equations with distributions as initial data. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 305-316. doi: 10.3934/dcds.1997.3.305

[18]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[19]

Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018

[20]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]