March  2013, 12(2): 973-984. doi: 10.3934/cpaa.2013.12.973

Decay of solutions to fractal parabolic conservation laws with large initial data

1. 

Department of Mathematics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China, China

Received  October 2011 Revised  February 2012 Published  September 2012

In this paper, we study the time-asymptotic behavior of solutions to the Cauchy problem for multi-dimensional parabolic conservation laws with fractional dissipation. For arbitrarily large initial data, we obtain the optimal decay rates in $L^2$ and homogeneous Sobolev spaces for solutions to the equation with the power of Laplacian $\frac{1}{2} < \alpha \le 1$ by using the time-frequency decomposition method and the energy method. The argument is based on a maximum principle.
Citation: Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure & Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973
References:
[1]

P. Biler, T. Funaki and W. Woyczyński, Fractal Burgers equations,, J. Differential Equations, 148 (1998), 9.  doi: 10.1006/jdeq.1998.3458.  Google Scholar

[2]

P. Biler, G. Karch and W. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws,, Ann. Inst. H. Poincar\'e, 18 (2001), 613.  doi: 10.1016/S0294-1449(01)00080-4.  Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger Equation," Courant Lecture Notes in Math. 10,, Courant Ins. Math. Sci. and Amer. Math. Soc., (2003).   Google Scholar

[4]

C. Chicone, "Ordinary Differential Equations with Applications,", 2$^{nd}$ edition, 34 (2006).   Google Scholar

[5]

P. Constantin, D. Córdoba and J. Wu, On the critical dissipative quasi-geostrophic equations,, Indiana Univ. Math. J., 50 (2001), 97.  doi: 10.1512/iumj.2001.50.2153.  Google Scholar

[6]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations,, SIAM J. Math. Anal., 30 (1999), 937.  doi: 10.1137/S0036141098337333.  Google Scholar

[7]

A. Cródoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[8]

J. Droniou, T. Gallouët and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation,, J. Evol. Equ., 3 (2003), 499.  doi: 10.1007/s00028-003-0503-1.  Google Scholar

[9]

J. Han and W. Wang, Decay estimates and the application in the stability for the solutions to the subcritical dissipative quasi-geostrophic equations,, preprint, (2009).   Google Scholar

[10]

E. Hopf, The partial differential equation $u_t+uu_x=\mu u_{x x}$, , Comm. Pure Appl. Math., 3 (1950), 201.  doi: 10.1002/cpa.3160030302.  Google Scholar

[11]

N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.  doi: 10.1007/s00039-002-8250-z.  Google Scholar

[12]

D. B. Kotlow, Quasilinear parabolic equations and first order quasilinear conservation laws with bad Cauchy data,, J. Math. Anal. Appl., 35 (1971), 563.  doi: 10.1016/0022-247X(71)90204-6.  Google Scholar

[13]

T.-T. Li and Y.-M. Chen, "Nonlinear Evolution Equations,", in Chinese, (1989).   Google Scholar

[14]

S. Resnick, "Dynamical Problems in Non-linear Advective Partial Differential Equations,", Ph.D. thesis, (1995).   Google Scholar

[15]

M. E. Schonbek, Decay of solution to parabolic conservation laws,, Comm. Partial Differential Equations, 7 (1980), 449.  doi: 10.1080/0360530800882145.  Google Scholar

[16]

M. E. Schonbek, Uniform decay rates for parabolic conservation laws,, Nonlinear Anal., 10 (1986), 943.  doi: 10.1016/0362-546X(86)90080-5.  Google Scholar

[17]

M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows,, SIAM J. Math. Anal., 35 (2003), 357.  doi: 10.1137/S0036141002409362.  Google Scholar

[18]

W. Wang and L. Yu, Decay of solutions to parabolic conservation laws with large initial data,, preprint, (2009).   Google Scholar

show all references

References:
[1]

P. Biler, T. Funaki and W. Woyczyński, Fractal Burgers equations,, J. Differential Equations, 148 (1998), 9.  doi: 10.1006/jdeq.1998.3458.  Google Scholar

[2]

P. Biler, G. Karch and W. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws,, Ann. Inst. H. Poincar\'e, 18 (2001), 613.  doi: 10.1016/S0294-1449(01)00080-4.  Google Scholar

[3]

T. Cazenave, "Semilinear Schrödinger Equation," Courant Lecture Notes in Math. 10,, Courant Ins. Math. Sci. and Amer. Math. Soc., (2003).   Google Scholar

[4]

C. Chicone, "Ordinary Differential Equations with Applications,", 2$^{nd}$ edition, 34 (2006).   Google Scholar

[5]

P. Constantin, D. Córdoba and J. Wu, On the critical dissipative quasi-geostrophic equations,, Indiana Univ. Math. J., 50 (2001), 97.  doi: 10.1512/iumj.2001.50.2153.  Google Scholar

[6]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations,, SIAM J. Math. Anal., 30 (1999), 937.  doi: 10.1137/S0036141098337333.  Google Scholar

[7]

A. Cródoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Phys., 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[8]

J. Droniou, T. Gallouët and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation,, J. Evol. Equ., 3 (2003), 499.  doi: 10.1007/s00028-003-0503-1.  Google Scholar

[9]

J. Han and W. Wang, Decay estimates and the application in the stability for the solutions to the subcritical dissipative quasi-geostrophic equations,, preprint, (2009).   Google Scholar

[10]

E. Hopf, The partial differential equation $u_t+uu_x=\mu u_{x x}$, , Comm. Pure Appl. Math., 3 (1950), 201.  doi: 10.1002/cpa.3160030302.  Google Scholar

[11]

N. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.  doi: 10.1007/s00039-002-8250-z.  Google Scholar

[12]

D. B. Kotlow, Quasilinear parabolic equations and first order quasilinear conservation laws with bad Cauchy data,, J. Math. Anal. Appl., 35 (1971), 563.  doi: 10.1016/0022-247X(71)90204-6.  Google Scholar

[13]

T.-T. Li and Y.-M. Chen, "Nonlinear Evolution Equations,", in Chinese, (1989).   Google Scholar

[14]

S. Resnick, "Dynamical Problems in Non-linear Advective Partial Differential Equations,", Ph.D. thesis, (1995).   Google Scholar

[15]

M. E. Schonbek, Decay of solution to parabolic conservation laws,, Comm. Partial Differential Equations, 7 (1980), 449.  doi: 10.1080/0360530800882145.  Google Scholar

[16]

M. E. Schonbek, Uniform decay rates for parabolic conservation laws,, Nonlinear Anal., 10 (1986), 943.  doi: 10.1016/0362-546X(86)90080-5.  Google Scholar

[17]

M. E. Schonbek and T. P. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows,, SIAM J. Math. Anal., 35 (2003), 357.  doi: 10.1137/S0036141002409362.  Google Scholar

[18]

W. Wang and L. Yu, Decay of solutions to parabolic conservation laws with large initial data,, preprint, (2009).   Google Scholar

[1]

Robert M. Strain. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic & Related Models, 2012, 5 (3) : 583-613. doi: 10.3934/krm.2012.5.583

[2]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[3]

Carey Caginalp. A survey of results on conservation laws with deterministic and random initial data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2043-2069. doi: 10.3934/dcdsb.2018225

[4]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[5]

Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154

[6]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[7]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[8]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

[9]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[10]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[11]

Francis Ribaud. Semilinear parabolic equations with distributions as initial data. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 305-316. doi: 10.3934/dcds.1997.3.305

[12]

Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203

[13]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[14]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[15]

Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018

[16]

Albert Fannjiang, Knut Solna. Time reversal of parabolic waves and two-frequency Wigner distribution. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 783-802. doi: 10.3934/dcdsb.2006.6.783

[17]

Hongyun Peng, Lizhi Ruan, Changjiang Zhu. Convergence rates of zero diffusion limit on large amplitude solution to a conservation laws arising in chemotaxis. Kinetic & Related Models, 2012, 5 (3) : 563-581. doi: 10.3934/krm.2012.5.563

[18]

Paschalis Karageorgis. Small-data scattering for nonlinear waves with potential and initial data of critical decay. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 87-106. doi: 10.3934/dcds.2006.16.87

[19]

Eduardo Casas, Boris Vexler, Enrique Zuazua. Sparse initial data identification for parabolic PDE and its finite element approximations. Mathematical Control & Related Fields, 2015, 5 (3) : 377-399. doi: 10.3934/mcrf.2015.5.377

[20]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]