January  2014, 13(1): 1-73. doi: 10.3934/cpaa.2014.13.1

High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems

1. 

Department of Applied Mathematics, Complutense University of Madrid, Madrid, 28040, Spain

2. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain

3. 

Dipartimento di Matematica e Informatica, Università, Via Delle Scienze 206, I-33100 Udine

Received  October 2012 Revised  May 2013 Published  July 2013

This paper analyzes the existence and structure of the positive solutions of a very simple superlinear indefinite semilinear elliptic prototype model under non-homogeneous boundary conditions, measured by $M\leq \infty$. Rather strikingly, there are ranges of values of the parameters involved in its setting for which the model admits an arbitrarily large number of positive solutions, as a result of their fast oscillatory behavior, for sufficiently large $M$. Further, using the amplitude of the superlinear term as the main bifurcation parameter, we can ascertain the global bifurcation diagram of the positive solutions. This seems to be the first work where these multiplicity results have been documented.
Citation: Julián López-Góme, Andrea Tellini, F. Zanolin. High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 1-73. doi: 10.3934/cpaa.2014.13.1
References:
[1]

S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign,, J. Funct. Anal., 141 (1996), 159.  doi: 10.1006/jfan.1996.0125.  Google Scholar

[2]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Diff. Eqns., 146 (1998), 336.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[3]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Top. meth. Nonl. Anal., 4 (1994), 59.   Google Scholar

[4]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems,, Nonl. Diff. Eqns. Appns., 2 (1995), 553.  doi: 10.1007/BF01210623.  Google Scholar

[5]

M. Bertsch and R. Rostamian, The principle of linearized stability for a class of degenerate diffusion equations,, J. Diff. Eqns., 57 (1985), 373.  doi: 10.1016/0022-0396(85)90062-2.  Google Scholar

[6]

S. Cano-Casanova, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Anal. TMA, 49 (2002), 361.  doi: 10.1016/S0362-546X(01)00116-X.  Google Scholar

[7]

W. Dambrosio, Time-map techniques for some boundary value problems,, Rocky Mountain J. Math., 28 (1998), 885.  doi: 10.1216/rmjm/1181071745.  Google Scholar

[8]

J. Fraile, P. Koch-Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Diff. Eqns., 127 (1996), 295.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[9]

J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights,, J. Funct. Anal., 261 (2011), 1775.  doi: 10.1016/j.jfa.2011.05.018.  Google Scholar

[10]

J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Rat. Mech. Anal., 145 (1998), 261.  doi: 10.1007/s002050050130.  Google Scholar

[11]

R. García-Melián and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations,, J. Diff. Eqns., 167 (2000), 36.  doi: 10.1006/jdeq.2000.3772.  Google Scholar

[12]

R. García-Melián and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations,, Diff. Int. Eqns., 14 (2001), 751.   Google Scholar

[13]

G. A. Harris, The influence of boundary data on the number of solutions of boundary value problems with jumping nonlinearities,, Trans. Amer. Math. Soc., 321 (1990), 417.  doi: 10.2307/2001568.  Google Scholar

[14]

J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems,, Comm. Part. Diff. Eqns., 22 (1997), 1787.  doi: 10.1080/03605309708821320.  Google Scholar

[15]

J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems,, Trans. Amer. Math. Soc., 352 (1999), 1825.  doi: 10.1090/S0002-9947-99-02352-1.  Google Scholar

[16]

J. López-Gómez, Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems,, El. J. Diff. Eqns. Conf., 5 (2000), 135.   Google Scholar

[17]

J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems,, Sci. Math. Jpn., 61 (2005), 493.   Google Scholar

[18]

J. López-Gómez, Metasolutions: Malthus versus Verhulst in Population Dynamics. A dream of Volterra,, in Handbook of Differential Equations, (2005), 211.  doi: 10.1016/S1874-5733(05)80012-9.  Google Scholar

[19]

J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications,, Diff. Int. Eqns., 7 (1994), 383.   Google Scholar

[20]

J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Diff. Eqns., 148 (1998), 47.  doi: 10.1006/jdeq.1998.3456.  Google Scholar

[21]

J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight,, J. Diff. Eqns., 188 (2003), 33.  doi: 10.1016/S0022-0396(02)00073-6.  Google Scholar

show all references

References:
[1]

S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign,, J. Funct. Anal., 141 (1996), 159.  doi: 10.1006/jfan.1996.0125.  Google Scholar

[2]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Diff. Eqns., 146 (1998), 336.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[3]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Top. meth. Nonl. Anal., 4 (1994), 59.   Google Scholar

[4]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems,, Nonl. Diff. Eqns. Appns., 2 (1995), 553.  doi: 10.1007/BF01210623.  Google Scholar

[5]

M. Bertsch and R. Rostamian, The principle of linearized stability for a class of degenerate diffusion equations,, J. Diff. Eqns., 57 (1985), 373.  doi: 10.1016/0022-0396(85)90062-2.  Google Scholar

[6]

S. Cano-Casanova, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Anal. TMA, 49 (2002), 361.  doi: 10.1016/S0362-546X(01)00116-X.  Google Scholar

[7]

W. Dambrosio, Time-map techniques for some boundary value problems,, Rocky Mountain J. Math., 28 (1998), 885.  doi: 10.1216/rmjm/1181071745.  Google Scholar

[8]

J. Fraile, P. Koch-Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Diff. Eqns., 127 (1996), 295.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[9]

J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights,, J. Funct. Anal., 261 (2011), 1775.  doi: 10.1016/j.jfa.2011.05.018.  Google Scholar

[10]

J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Rat. Mech. Anal., 145 (1998), 261.  doi: 10.1007/s002050050130.  Google Scholar

[11]

R. García-Melián and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations,, J. Diff. Eqns., 167 (2000), 36.  doi: 10.1006/jdeq.2000.3772.  Google Scholar

[12]

R. García-Melián and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations,, Diff. Int. Eqns., 14 (2001), 751.   Google Scholar

[13]

G. A. Harris, The influence of boundary data on the number of solutions of boundary value problems with jumping nonlinearities,, Trans. Amer. Math. Soc., 321 (1990), 417.  doi: 10.2307/2001568.  Google Scholar

[14]

J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems,, Comm. Part. Diff. Eqns., 22 (1997), 1787.  doi: 10.1080/03605309708821320.  Google Scholar

[15]

J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems,, Trans. Amer. Math. Soc., 352 (1999), 1825.  doi: 10.1090/S0002-9947-99-02352-1.  Google Scholar

[16]

J. López-Gómez, Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems,, El. J. Diff. Eqns. Conf., 5 (2000), 135.   Google Scholar

[17]

J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems,, Sci. Math. Jpn., 61 (2005), 493.   Google Scholar

[18]

J. López-Gómez, Metasolutions: Malthus versus Verhulst in Population Dynamics. A dream of Volterra,, in Handbook of Differential Equations, (2005), 211.  doi: 10.1016/S1874-5733(05)80012-9.  Google Scholar

[19]

J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications,, Diff. Int. Eqns., 7 (1994), 383.   Google Scholar

[20]

J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Diff. Eqns., 148 (1998), 47.  doi: 10.1006/jdeq.1998.3456.  Google Scholar

[21]

J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight,, J. Diff. Eqns., 188 (2003), 33.  doi: 10.1016/S0022-0396(02)00073-6.  Google Scholar

[1]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[2]

Xuemei Zhang, Meiqiang Feng. Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2149-2171. doi: 10.3934/cpaa.2018103

[3]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[4]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[5]

Yi-hsin Cheng, Tsung-Fang Wu. Multiplicity and concentration of positive solutions for semilinear elliptic equations with steep potential. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2457-2473. doi: 10.3934/cpaa.2016044

[6]

Jiafeng Liao, Peng Zhang, Jiu Liu, Chunlei Tang. Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1959-1974. doi: 10.3934/dcdss.2016080

[7]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[8]

Leonelo Iturriaga, Eugenio Massa. Existence, nonexistence and multiplicity of positive solutions for the poly-Laplacian and nonlinearities with zeros. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3831-3850. doi: 10.3934/dcds.2018166

[9]

Lynnyngs Kelly Arruda, Francisco Odair de Paiva, Ilma Marques. A remark on multiplicity of positive solutions for a class of quasilinear elliptic systems. Conference Publications, 2011, 2011 (Special) : 112-116. doi: 10.3934/proc.2011.2011.112

[10]

Xiyou Cheng, Zhaosheng Feng, Zhitao Zhang. Multiplicity of positive solutions to nonlinear systems of Hammerstein integral equations with weighted functions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 221-240. doi: 10.3934/cpaa.2020012

[11]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111

[12]

Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871

[13]

Rafael Labarca, Solange Aranzubia. A formula for the boundary of chaos in the lexicographical scenario and applications to the bifurcation diagram of the standard two parameter family of quadratic increasing-increasing Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1745-1776. doi: 10.3934/dcds.2018072

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure & Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[16]

Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497

[17]

Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335

[18]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003

[19]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[20]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (13)

[Back to Top]