-
Previous Article
Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems
- CPAA Home
- This Issue
- Next Article
High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems
1. | Department of Applied Mathematics, Complutense University of Madrid, Madrid, 28040, Spain |
2. | Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain |
3. | Dipartimento di Matematica e Informatica, Università, Via Delle Scienze 206, I-33100 Udine |
References:
[1] |
S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign,, J. Funct. Anal., 141 (1996), 159.
doi: 10.1006/jfan.1996.0125. |
[2] |
H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Diff. Eqns., 146 (1998), 336.
doi: 10.1006/jdeq.1998.3440. |
[3] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Top. meth. Nonl. Anal., 4 (1994), 59.
|
[4] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems,, Nonl. Diff. Eqns. Appns., 2 (1995), 553.
doi: 10.1007/BF01210623. |
[5] |
M. Bertsch and R. Rostamian, The principle of linearized stability for a class of degenerate diffusion equations,, J. Diff. Eqns., 57 (1985), 373.
doi: 10.1016/0022-0396(85)90062-2. |
[6] |
S. Cano-Casanova, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Anal. TMA, 49 (2002), 361.
doi: 10.1016/S0362-546X(01)00116-X. |
[7] |
W. Dambrosio, Time-map techniques for some boundary value problems,, Rocky Mountain J. Math., 28 (1998), 885.
doi: 10.1216/rmjm/1181071745. |
[8] |
J. Fraile, P. Koch-Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Diff. Eqns., 127 (1996), 295.
doi: 10.1006/jdeq.1996.0071. |
[9] |
J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights,, J. Funct. Anal., 261 (2011), 1775.
doi: 10.1016/j.jfa.2011.05.018. |
[10] |
J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Rat. Mech. Anal., 145 (1998), 261.
doi: 10.1007/s002050050130. |
[11] |
R. García-Melián and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations,, J. Diff. Eqns., 167 (2000), 36.
doi: 10.1006/jdeq.2000.3772. |
[12] |
R. García-Melián and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations,, Diff. Int. Eqns., 14 (2001), 751.
|
[13] |
G. A. Harris, The influence of boundary data on the number of solutions of boundary value problems with jumping nonlinearities,, Trans. Amer. Math. Soc., 321 (1990), 417.
doi: 10.2307/2001568. |
[14] |
J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems,, Comm. Part. Diff. Eqns., 22 (1997), 1787.
doi: 10.1080/03605309708821320. |
[15] |
J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems,, Trans. Amer. Math. Soc., 352 (1999), 1825.
doi: 10.1090/S0002-9947-99-02352-1. |
[16] |
J. López-Gómez, Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems,, El. J. Diff. Eqns. Conf., 5 (2000), 135.
|
[17] |
J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems,, Sci. Math. Jpn., 61 (2005), 493.
|
[18] |
J. López-Gómez, Metasolutions: Malthus versus Verhulst in Population Dynamics. A dream of Volterra,, in Handbook of Differential Equations, (2005), 211.
doi: 10.1016/S1874-5733(05)80012-9. |
[19] |
J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications,, Diff. Int. Eqns., 7 (1994), 383.
|
[20] |
J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Diff. Eqns., 148 (1998), 47.
doi: 10.1006/jdeq.1998.3456. |
[21] |
J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight,, J. Diff. Eqns., 188 (2003), 33.
doi: 10.1016/S0022-0396(02)00073-6. |
show all references
References:
[1] |
S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign,, J. Funct. Anal., 141 (1996), 159.
doi: 10.1006/jfan.1996.0125. |
[2] |
H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Diff. Eqns., 146 (1998), 336.
doi: 10.1006/jdeq.1998.3440. |
[3] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Top. meth. Nonl. Anal., 4 (1994), 59.
|
[4] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems,, Nonl. Diff. Eqns. Appns., 2 (1995), 553.
doi: 10.1007/BF01210623. |
[5] |
M. Bertsch and R. Rostamian, The principle of linearized stability for a class of degenerate diffusion equations,, J. Diff. Eqns., 57 (1985), 373.
doi: 10.1016/0022-0396(85)90062-2. |
[6] |
S. Cano-Casanova, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Anal. TMA, 49 (2002), 361.
doi: 10.1016/S0362-546X(01)00116-X. |
[7] |
W. Dambrosio, Time-map techniques for some boundary value problems,, Rocky Mountain J. Math., 28 (1998), 885.
doi: 10.1216/rmjm/1181071745. |
[8] |
J. Fraile, P. Koch-Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Diff. Eqns., 127 (1996), 295.
doi: 10.1006/jdeq.1996.0071. |
[9] |
J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights,, J. Funct. Anal., 261 (2011), 1775.
doi: 10.1016/j.jfa.2011.05.018. |
[10] |
J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Rat. Mech. Anal., 145 (1998), 261.
doi: 10.1007/s002050050130. |
[11] |
R. García-Melián and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations,, J. Diff. Eqns., 167 (2000), 36.
doi: 10.1006/jdeq.2000.3772. |
[12] |
R. García-Melián and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations,, Diff. Int. Eqns., 14 (2001), 751.
|
[13] |
G. A. Harris, The influence of boundary data on the number of solutions of boundary value problems with jumping nonlinearities,, Trans. Amer. Math. Soc., 321 (1990), 417.
doi: 10.2307/2001568. |
[14] |
J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems,, Comm. Part. Diff. Eqns., 22 (1997), 1787.
doi: 10.1080/03605309708821320. |
[15] |
J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems,, Trans. Amer. Math. Soc., 352 (1999), 1825.
doi: 10.1090/S0002-9947-99-02352-1. |
[16] |
J. López-Gómez, Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems,, El. J. Diff. Eqns. Conf., 5 (2000), 135.
|
[17] |
J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems,, Sci. Math. Jpn., 61 (2005), 493.
|
[18] |
J. López-Gómez, Metasolutions: Malthus versus Verhulst in Population Dynamics. A dream of Volterra,, in Handbook of Differential Equations, (2005), 211.
doi: 10.1016/S1874-5733(05)80012-9. |
[19] |
J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications,, Diff. Int. Eqns., 7 (1994), 383.
|
[20] |
J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Diff. Eqns., 148 (1998), 47.
doi: 10.1006/jdeq.1998.3456. |
[21] |
J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight,, J. Diff. Eqns., 188 (2003), 33.
doi: 10.1016/S0022-0396(02)00073-6. |
[1] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[2] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[3] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[4] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[5] |
Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009 |
[6] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[7] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[8] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[9] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[10] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[11] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[12] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[13] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[14] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[15] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[16] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[17] |
Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021041 |
[18] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[19] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210 |
[20] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]