January  2014, 13(1): 1-73. doi: 10.3934/cpaa.2014.13.1

High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems

1. 

Department of Applied Mathematics, Complutense University of Madrid, Madrid, 28040, Spain

2. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain

3. 

Dipartimento di Matematica e Informatica, Università, Via Delle Scienze 206, I-33100 Udine

Received  October 2012 Revised  May 2013 Published  July 2013

This paper analyzes the existence and structure of the positive solutions of a very simple superlinear indefinite semilinear elliptic prototype model under non-homogeneous boundary conditions, measured by $M\leq \infty$. Rather strikingly, there are ranges of values of the parameters involved in its setting for which the model admits an arbitrarily large number of positive solutions, as a result of their fast oscillatory behavior, for sufficiently large $M$. Further, using the amplitude of the superlinear term as the main bifurcation parameter, we can ascertain the global bifurcation diagram of the positive solutions. This seems to be the first work where these multiplicity results have been documented.
Citation: Julián López-Góme, Andrea Tellini, F. Zanolin. High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 1-73. doi: 10.3934/cpaa.2014.13.1
References:
[1]

S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign,, J. Funct. Anal., 141 (1996), 159.  doi: 10.1006/jfan.1996.0125.  Google Scholar

[2]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Diff. Eqns., 146 (1998), 336.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[3]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Top. meth. Nonl. Anal., 4 (1994), 59.   Google Scholar

[4]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems,, Nonl. Diff. Eqns. Appns., 2 (1995), 553.  doi: 10.1007/BF01210623.  Google Scholar

[5]

M. Bertsch and R. Rostamian, The principle of linearized stability for a class of degenerate diffusion equations,, J. Diff. Eqns., 57 (1985), 373.  doi: 10.1016/0022-0396(85)90062-2.  Google Scholar

[6]

S. Cano-Casanova, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Anal. TMA, 49 (2002), 361.  doi: 10.1016/S0362-546X(01)00116-X.  Google Scholar

[7]

W. Dambrosio, Time-map techniques for some boundary value problems,, Rocky Mountain J. Math., 28 (1998), 885.  doi: 10.1216/rmjm/1181071745.  Google Scholar

[8]

J. Fraile, P. Koch-Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Diff. Eqns., 127 (1996), 295.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[9]

J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights,, J. Funct. Anal., 261 (2011), 1775.  doi: 10.1016/j.jfa.2011.05.018.  Google Scholar

[10]

J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Rat. Mech. Anal., 145 (1998), 261.  doi: 10.1007/s002050050130.  Google Scholar

[11]

R. García-Melián and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations,, J. Diff. Eqns., 167 (2000), 36.  doi: 10.1006/jdeq.2000.3772.  Google Scholar

[12]

R. García-Melián and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations,, Diff. Int. Eqns., 14 (2001), 751.   Google Scholar

[13]

G. A. Harris, The influence of boundary data on the number of solutions of boundary value problems with jumping nonlinearities,, Trans. Amer. Math. Soc., 321 (1990), 417.  doi: 10.2307/2001568.  Google Scholar

[14]

J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems,, Comm. Part. Diff. Eqns., 22 (1997), 1787.  doi: 10.1080/03605309708821320.  Google Scholar

[15]

J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems,, Trans. Amer. Math. Soc., 352 (1999), 1825.  doi: 10.1090/S0002-9947-99-02352-1.  Google Scholar

[16]

J. López-Gómez, Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems,, El. J. Diff. Eqns. Conf., 5 (2000), 135.   Google Scholar

[17]

J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems,, Sci. Math. Jpn., 61 (2005), 493.   Google Scholar

[18]

J. López-Gómez, Metasolutions: Malthus versus Verhulst in Population Dynamics. A dream of Volterra,, in Handbook of Differential Equations, (2005), 211.  doi: 10.1016/S1874-5733(05)80012-9.  Google Scholar

[19]

J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications,, Diff. Int. Eqns., 7 (1994), 383.   Google Scholar

[20]

J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Diff. Eqns., 148 (1998), 47.  doi: 10.1006/jdeq.1998.3456.  Google Scholar

[21]

J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight,, J. Diff. Eqns., 188 (2003), 33.  doi: 10.1016/S0022-0396(02)00073-6.  Google Scholar

show all references

References:
[1]

S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign,, J. Funct. Anal., 141 (1996), 159.  doi: 10.1006/jfan.1996.0125.  Google Scholar

[2]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Diff. Eqns., 146 (1998), 336.  doi: 10.1006/jdeq.1998.3440.  Google Scholar

[3]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Top. meth. Nonl. Anal., 4 (1994), 59.   Google Scholar

[4]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems,, Nonl. Diff. Eqns. Appns., 2 (1995), 553.  doi: 10.1007/BF01210623.  Google Scholar

[5]

M. Bertsch and R. Rostamian, The principle of linearized stability for a class of degenerate diffusion equations,, J. Diff. Eqns., 57 (1985), 373.  doi: 10.1016/0022-0396(85)90062-2.  Google Scholar

[6]

S. Cano-Casanova, Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Anal. TMA, 49 (2002), 361.  doi: 10.1016/S0362-546X(01)00116-X.  Google Scholar

[7]

W. Dambrosio, Time-map techniques for some boundary value problems,, Rocky Mountain J. Math., 28 (1998), 885.  doi: 10.1216/rmjm/1181071745.  Google Scholar

[8]

J. Fraile, P. Koch-Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, J. Diff. Eqns., 127 (1996), 295.  doi: 10.1006/jdeq.1996.0071.  Google Scholar

[9]

J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights,, J. Funct. Anal., 261 (2011), 1775.  doi: 10.1016/j.jfa.2011.05.018.  Google Scholar

[10]

J. García-Melián, R. Gómez-Reñasco, J. López-Gómez and J. C. Sabina de Lis, Point-wise growth and uniqueness of positive solutions for a class of sublinear elliptic problems where bifurcation from infinity occurs,, Arch. Rat. Mech. Anal., 145 (1998), 261.  doi: 10.1007/s002050050130.  Google Scholar

[11]

R. García-Melián and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations,, J. Diff. Eqns., 167 (2000), 36.  doi: 10.1006/jdeq.2000.3772.  Google Scholar

[12]

R. García-Melián and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations,, Diff. Int. Eqns., 14 (2001), 751.   Google Scholar

[13]

G. A. Harris, The influence of boundary data on the number of solutions of boundary value problems with jumping nonlinearities,, Trans. Amer. Math. Soc., 321 (1990), 417.  doi: 10.2307/2001568.  Google Scholar

[14]

J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems,, Comm. Part. Diff. Eqns., 22 (1997), 1787.  doi: 10.1080/03605309708821320.  Google Scholar

[15]

J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems,, Trans. Amer. Math. Soc., 352 (1999), 1825.  doi: 10.1090/S0002-9947-99-02352-1.  Google Scholar

[16]

J. López-Gómez, Large solutions, metasolutions, and asymptotic behavior of the regular positive solutions of a class of sublinear parabolic problems,, El. J. Diff. Eqns. Conf., 5 (2000), 135.   Google Scholar

[17]

J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems,, Sci. Math. Jpn., 61 (2005), 493.   Google Scholar

[18]

J. López-Gómez, Metasolutions: Malthus versus Verhulst in Population Dynamics. A dream of Volterra,, in Handbook of Differential Equations, (2005), 211.  doi: 10.1016/S1874-5733(05)80012-9.  Google Scholar

[19]

J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications,, Diff. Int. Eqns., 7 (1994), 383.   Google Scholar

[20]

J. López-Gómez and J. C. Sabina de Lis, First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs,, J. Diff. Eqns., 148 (1998), 47.  doi: 10.1006/jdeq.1998.3456.  Google Scholar

[21]

J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight,, J. Diff. Eqns., 188 (2003), 33.  doi: 10.1016/S0022-0396(02)00073-6.  Google Scholar

[1]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[2]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[3]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[4]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[5]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[6]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[7]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[8]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[9]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[10]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[11]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[12]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[13]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[14]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[15]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[16]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[17]

Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021041

[18]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[19]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[20]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (27)

[Back to Top]