• Previous Article
    On some elementary properties of vector minimizers of the Allen-Cahn energy
  • CPAA Home
  • This Issue
  • Next Article
    Consequences of the choice of a particular basis of $L^2(S^3)$ for the cubic wave equation on the sphere and the Euclidean space
May  2014, 13(3): 1017-1044. doi: 10.3934/cpaa.2014.13.1017

Homogenisation theory for Friedrichs systems

1. 

Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, 31 Osijek, Croatia

2. 

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10 Zagreb, Croatia

Received  March 2013 Revised  September 2013 Published  December 2013

We develop a general homogenisation procedure for Friedrichs systems. Under reasonable assumptions, the concepts of $G$ and $H$-convergence are introduced. As Friedrichs systems can be used to represent various boundary or initial-boundary value problems for partial differential equations, some additional assumptions are needed for compactness results. These assumptions are particularly examined for the stationary diffusion equation, the heat equation and a model example of a first order equation leading to memory effects. In the first two cases, the equivalence with the original notion of $H$-convergence is proved.
Citation: Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017
References:
[1]

Grégoire Allaire, Shape Optimization by the Homogenization Method,, Springer-Verlag, (2002).   Google Scholar

[2]

Nenad Antonić and Krešimir Burazin, Graph spaces of first-order linear partial differential operators,, \emph{Math. Communications}, 14 (2009), 135.   Google Scholar

[3]

Nenad Antonić and Krešimir Burazin, Intrinsic boundary conditions for Friedrichs systems,, \emph{Comm. Partial Diff. Eq.}, 35 (2010), 1690.   Google Scholar

[4]

Nenad Antonić and Krešimir Burazin, Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems,, \emph{J. Diff. Eq.}, 250 (2011), 3630.   Google Scholar

[5]

Nenad Antonić, Krešimir Burazin and Marko Vrdoljak, Second-order equations as Friedrichs systems,, \emph{Nonlinear Analysis: RWA}, 14 (2014), 290.   Google Scholar

[6]

Nenad Antonić, Krešimir Burazin and Marko Vrdoljak, Heat equation as a Friedrichs system,, \emph{Journal of Mathematical Analysis and Applications}, 404 (2013), 537.   Google Scholar

[7]

Nenad Antonić and Marko Vrdoljak, Parabolic H-convergence and small-amplitude homogenization,, \emph{Applicable Analysis}, 88 (2009), 1493.   Google Scholar

[8]

Alain Bensoussan, Jacques-Lous Lions and Georgios Papanicolaou, Asymptotic Analysis in Periodic Structures,, North\'c湌olland, (1978).   Google Scholar

[9]

Krešimir Burazin, Contributions to the theory of Friedrichs' and Hyperbolic Systems,, Ph.D thesis (in Croatian), (2008).   Google Scholar

[10]

Tan Bui-Thanh, Leszek Demkowicz and Omar Ghattas, A unified discontinuous Petrov-Galerkin method and its analysis for Friedrichs' systems,, \emph{SIAM J. Numer. Anal.}, 51 (2013), 1933.   Google Scholar

[11]

Andrea Dall'Aglio and Francois Murat, A corrector result for $H$-converging parabolic problems with time-dependent coefficients,, \emph{Annali della Scuola Normale Superiore di Pisa}, 25 (1997), 329.   Google Scholar

[12]

Daniele Antonio Di Pietro and Alexandre Ern, Mathematical Aspects of Discontinuous Galer\-Kin Methods,, Springer, (2012).   Google Scholar

[13]

Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology, Vol. II,, Springer, (1992).   Google Scholar

[14]

Alexandre Ern and Jean-Luc Guermond, Theory and Practice of Finite Elements,, Springer, (2004).   Google Scholar

[15]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory,, \emph{SIAM J. Numer. Anal.}, 44 (2006), 753.   Google Scholar

[16]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order elliptic PDEs,, \emph{SIAM J. Numer. Anal.}, 44 (2006), 2363.   Google Scholar

[17]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. III. Multifield theories with partial coercivity,, \emph{SIAM J. Numer. Anal.}, 46 (2008), 776.   Google Scholar

[18]

Alexandre Ern, Jean-Luc Guermond and Gilbert Caplain, An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems,, \emph{Comm. Partial Diff. Eq.}, 32 (2007), 317.   Google Scholar

[19]

Kurt O. Friedrichs, Symmetric positive linear differential equations,, \emph{Comm. Pure Appl. Math.}, 11 (1958), 333.   Google Scholar

[20]

Max Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions,, Ph.D thesis, (2004).   Google Scholar

[21]

Jacques-Lous Lions and Enrico Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 1,, Springer, (1972).   Google Scholar

[22]

François Murat and Luc Tartar, H-convergence,, in \emph{S\'eminaire d'Analyse Fonctionnelle et Num\'erique de l'Universit\'e d'Alger, (1978), 21.   Google Scholar

[23]

Jeffrey Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, \emph{Trans. Amer. Math. Soc.}, 291 (1985), 167.   Google Scholar

[24]

Sergio Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore,, \emph{Ann. Scuola Norm. Sup. Pisa}, 21 (1967), 657.   Google Scholar

[25]

Sergio Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, \emph{Ann. Scuola Norm. Sup. Pisa}, 22 (1968), 571.   Google Scholar

[26]

Sergio Spagnolo, Convergence of parabolic equations,, \emph{Bolletino della Unione Matematica Italiana}, 14 (1977), 547.   Google Scholar

[27]

Luc Tartar, Problèmes de contrôle des coefficients dans des équations aux dérivées partielles,, in \emph{Control Theory, 107 (1975), 420.   Google Scholar

[28]

Luc Tartar, Nonlocal effects induced by homogenisation,, in \emph{Partial Differential Equations and the Calculus of Variation, (1989), 925.   Google Scholar

[29]

Luc Tartar, The General Theory of Homogenization: A Personalized Introduction,, Springer, (2009).   Google Scholar

[30]

Marcus Waurick, On the theory of homogenization of evolutionary equations in Hilbert spaces,, preprint, ().   Google Scholar

[31]

Vasili V. Žikov, Sergei M. Kozlov, Ol'ga A. Oleinik and Ha Tien Ngoan, Homogenization and G-convergence of differential operators,, \emph{Uspehi Mat. Nauk}, 34 (1979), 65.   Google Scholar

[32]

Vasili V. Žikov, Sergei M. Kozlov and Ol'ga A. Oleinik, On G-convergence of parabolic operators,, \emph{Russ. Math. Surv.}, 36 (1981), 9.   Google Scholar

show all references

References:
[1]

Grégoire Allaire, Shape Optimization by the Homogenization Method,, Springer-Verlag, (2002).   Google Scholar

[2]

Nenad Antonić and Krešimir Burazin, Graph spaces of first-order linear partial differential operators,, \emph{Math. Communications}, 14 (2009), 135.   Google Scholar

[3]

Nenad Antonić and Krešimir Burazin, Intrinsic boundary conditions for Friedrichs systems,, \emph{Comm. Partial Diff. Eq.}, 35 (2010), 1690.   Google Scholar

[4]

Nenad Antonić and Krešimir Burazin, Boundary operator from matrix field formulation of boundary conditions for Friedrichs systems,, \emph{J. Diff. Eq.}, 250 (2011), 3630.   Google Scholar

[5]

Nenad Antonić, Krešimir Burazin and Marko Vrdoljak, Second-order equations as Friedrichs systems,, \emph{Nonlinear Analysis: RWA}, 14 (2014), 290.   Google Scholar

[6]

Nenad Antonić, Krešimir Burazin and Marko Vrdoljak, Heat equation as a Friedrichs system,, \emph{Journal of Mathematical Analysis and Applications}, 404 (2013), 537.   Google Scholar

[7]

Nenad Antonić and Marko Vrdoljak, Parabolic H-convergence and small-amplitude homogenization,, \emph{Applicable Analysis}, 88 (2009), 1493.   Google Scholar

[8]

Alain Bensoussan, Jacques-Lous Lions and Georgios Papanicolaou, Asymptotic Analysis in Periodic Structures,, North\'c湌olland, (1978).   Google Scholar

[9]

Krešimir Burazin, Contributions to the theory of Friedrichs' and Hyperbolic Systems,, Ph.D thesis (in Croatian), (2008).   Google Scholar

[10]

Tan Bui-Thanh, Leszek Demkowicz and Omar Ghattas, A unified discontinuous Petrov-Galerkin method and its analysis for Friedrichs' systems,, \emph{SIAM J. Numer. Anal.}, 51 (2013), 1933.   Google Scholar

[11]

Andrea Dall'Aglio and Francois Murat, A corrector result for $H$-converging parabolic problems with time-dependent coefficients,, \emph{Annali della Scuola Normale Superiore di Pisa}, 25 (1997), 329.   Google Scholar

[12]

Daniele Antonio Di Pietro and Alexandre Ern, Mathematical Aspects of Discontinuous Galer\-Kin Methods,, Springer, (2012).   Google Scholar

[13]

Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology, Vol. II,, Springer, (1992).   Google Scholar

[14]

Alexandre Ern and Jean-Luc Guermond, Theory and Practice of Finite Elements,, Springer, (2004).   Google Scholar

[15]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory,, \emph{SIAM J. Numer. Anal.}, 44 (2006), 753.   Google Scholar

[16]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order elliptic PDEs,, \emph{SIAM J. Numer. Anal.}, 44 (2006), 2363.   Google Scholar

[17]

Alexandre Ern and Jean-Luc Guermond, Discontinuous Galerkin methods for Friedrichs' systems. III. Multifield theories with partial coercivity,, \emph{SIAM J. Numer. Anal.}, 46 (2008), 776.   Google Scholar

[18]

Alexandre Ern, Jean-Luc Guermond and Gilbert Caplain, An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems,, \emph{Comm. Partial Diff. Eq.}, 32 (2007), 317.   Google Scholar

[19]

Kurt O. Friedrichs, Symmetric positive linear differential equations,, \emph{Comm. Pure Appl. Math.}, 11 (1958), 333.   Google Scholar

[20]

Max Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions,, Ph.D thesis, (2004).   Google Scholar

[21]

Jacques-Lous Lions and Enrico Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. 1,, Springer, (1972).   Google Scholar

[22]

François Murat and Luc Tartar, H-convergence,, in \emph{S\'eminaire d'Analyse Fonctionnelle et Num\'erique de l'Universit\'e d'Alger, (1978), 21.   Google Scholar

[23]

Jeffrey Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, \emph{Trans. Amer. Math. Soc.}, 291 (1985), 167.   Google Scholar

[24]

Sergio Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore,, \emph{Ann. Scuola Norm. Sup. Pisa}, 21 (1967), 657.   Google Scholar

[25]

Sergio Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, \emph{Ann. Scuola Norm. Sup. Pisa}, 22 (1968), 571.   Google Scholar

[26]

Sergio Spagnolo, Convergence of parabolic equations,, \emph{Bolletino della Unione Matematica Italiana}, 14 (1977), 547.   Google Scholar

[27]

Luc Tartar, Problèmes de contrôle des coefficients dans des équations aux dérivées partielles,, in \emph{Control Theory, 107 (1975), 420.   Google Scholar

[28]

Luc Tartar, Nonlocal effects induced by homogenisation,, in \emph{Partial Differential Equations and the Calculus of Variation, (1989), 925.   Google Scholar

[29]

Luc Tartar, The General Theory of Homogenization: A Personalized Introduction,, Springer, (2009).   Google Scholar

[30]

Marcus Waurick, On the theory of homogenization of evolutionary equations in Hilbert spaces,, preprint, ().   Google Scholar

[31]

Vasili V. Žikov, Sergei M. Kozlov, Ol'ga A. Oleinik and Ha Tien Ngoan, Homogenization and G-convergence of differential operators,, \emph{Uspehi Mat. Nauk}, 34 (1979), 65.   Google Scholar

[32]

Vasili V. Žikov, Sergei M. Kozlov and Ol'ga A. Oleinik, On G-convergence of parabolic operators,, \emph{Russ. Math. Surv.}, 36 (1981), 9.   Google Scholar

[1]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[2]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[3]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[10]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[11]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[12]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[13]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[14]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[16]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[17]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[18]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[19]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]