May  2014, 13(3): 1045-1060. doi: 10.3934/cpaa.2014.13.1045

On some elementary properties of vector minimizers of the Allen-Cahn energy

1. 

Dipartimento di Matematica Pura e Applicata, Università de L’Aquila, I-67100 L’Aquila

Received  March 2013 Revised  September 2013 Published  December 2013

We derive a point-wise estimate for a map $u: \Omega \subset R^n \rightarrow R^m$ that minimizes $J_A(v): \int_A \frac{1}{2}|\nabla v|^2+U(v)$ subjected to the Dirichlet condition $v=u$ on $\partial\Omega$ for every open smooth and bounded set $A \subset \Omega$. We discuss some consequences of this basic estimate.
Citation: Giorgio Fusco. On some elementary properties of vector minimizers of the Allen-Cahn energy. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1045-1060. doi: 10.3934/cpaa.2014.13.1045
References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: simmetry in 3D for general non linearities and a local minimality property,, \emph{Acta Appl. Math.}, 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

N. D. Alikakos, Some basic facts on the system $\Delta u-W_u(u)=0$,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 153.  doi: 10.1090/S0002-9939-2010-10453-7.  Google Scholar

[3]

N. D. Alikakos and G. Fusco, Entire solutions to equivariant elliptic system with variational structure,, \emph{Arch. Rational Mech. Anal.}, 202 (2011), 567.  doi: 10.1007/s00205-011-0441-z.  Google Scholar

[4]

N. D. Alikakos and G. Fusco, Asymptotic rigidity results for symmetric solutions of the elliptic system $\Delta u = Wu(u)$,, work in progress., ().   Google Scholar

[5]

N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves,, preprint, (2012).   Google Scholar

[6]

P. W. Bates, G. Fusco and P. Smyrnelis, Entire solutions with six-fold junctions to elliptic gradient systems with triangle symmetry,, \emph{Advan. Nonlin. Stud.}, 13 (2013), 1.   Google Scholar

[7]

P. W. Bates, G. Fusco and P. Smyrnelis, Multyphase solutions to the vector Allen-Cahn equations: Crystalline and other complex symmetric structures,, work in progress., ().   Google Scholar

[8]

A. Czarnecki, M. Kulczychi and W. Lubawski, On the connectedness of boundary and complement for domains,, \emph{Ann. Polin. Math.}, 103 (2011), 189.  doi: 10.4064/ap103-2-6.  Google Scholar

[9]

G. Fusco, Equivariant entire solutions to the elliptic system $\Delta u=W_u(u)$ for general $G-$invariant potentials,, \emph{Calc. Var. Part. Diff. Eqs.}, (2013), 1.   Google Scholar

[10]

G. Fusco, F. Leonetti and C. Pignotti, A uniform estimate for positive solutions of semilinear elliptic equations,, \emph{Trans. Amer. Math. Soc.}, 363 (2011), 4285.  doi: 10.1090/S0002-9947-2011-05356-0.  Google Scholar

[11]

B. Gidas, W. M. Ni and L. Niremberg, Symmetry and related properties via the maximum principle,, \emph{Comm. Math. Phys.}, 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[12]

J. Liouville, Lecons sur les fonctions doublement pèriodiques,, \emph{J. Reine Angew. Math.}, 88 (1879), 277.   Google Scholar

show all references

References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: simmetry in 3D for general non linearities and a local minimality property,, \emph{Acta Appl. Math.}, 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

N. D. Alikakos, Some basic facts on the system $\Delta u-W_u(u)=0$,, \emph{Proc. Amer. Math. Soc.}, 139 (2011), 153.  doi: 10.1090/S0002-9939-2010-10453-7.  Google Scholar

[3]

N. D. Alikakos and G. Fusco, Entire solutions to equivariant elliptic system with variational structure,, \emph{Arch. Rational Mech. Anal.}, 202 (2011), 567.  doi: 10.1007/s00205-011-0441-z.  Google Scholar

[4]

N. D. Alikakos and G. Fusco, Asymptotic rigidity results for symmetric solutions of the elliptic system $\Delta u = Wu(u)$,, work in progress., ().   Google Scholar

[5]

N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves,, preprint, (2012).   Google Scholar

[6]

P. W. Bates, G. Fusco and P. Smyrnelis, Entire solutions with six-fold junctions to elliptic gradient systems with triangle symmetry,, \emph{Advan. Nonlin. Stud.}, 13 (2013), 1.   Google Scholar

[7]

P. W. Bates, G. Fusco and P. Smyrnelis, Multyphase solutions to the vector Allen-Cahn equations: Crystalline and other complex symmetric structures,, work in progress., ().   Google Scholar

[8]

A. Czarnecki, M. Kulczychi and W. Lubawski, On the connectedness of boundary and complement for domains,, \emph{Ann. Polin. Math.}, 103 (2011), 189.  doi: 10.4064/ap103-2-6.  Google Scholar

[9]

G. Fusco, Equivariant entire solutions to the elliptic system $\Delta u=W_u(u)$ for general $G-$invariant potentials,, \emph{Calc. Var. Part. Diff. Eqs.}, (2013), 1.   Google Scholar

[10]

G. Fusco, F. Leonetti and C. Pignotti, A uniform estimate for positive solutions of semilinear elliptic equations,, \emph{Trans. Amer. Math. Soc.}, 363 (2011), 4285.  doi: 10.1090/S0002-9947-2011-05356-0.  Google Scholar

[11]

B. Gidas, W. M. Ni and L. Niremberg, Symmetry and related properties via the maximum principle,, \emph{Comm. Math. Phys.}, 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[12]

J. Liouville, Lecons sur les fonctions doublement pèriodiques,, \emph{J. Reine Angew. Math.}, 88 (1879), 277.   Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[4]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[14]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[15]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]