May  2014, 13(3): 1061-1074. doi: 10.3934/cpaa.2014.13.1061

Multi-valued solutions to a class of parabolic Monge-Ampère equations

1. 

School of Mathematics and information Science, Weifang University, Shandong Weifang, 261061, China

Received  March 2013 Revised  September 2013 Published  December 2013

In this paper, we investigate the multi-valued solutions of a class of parabolic Monge-Ampère equation $-u_{t}\det(D^{2}u)=f$. Using the Perron method, we obtain the existence of finitely valued and infinitely valued solutions to the parabolic Monge-Ampère equations. We generalize the results of elliptic Monge-Ampère equations and Hessian equations.
Citation: Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061
References:
[1]

L. Caffarelli, Certain multiple valued harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 54 (1976), 90.   Google Scholar

[2]

L. Caffarelli, On the Hölder continuity of multiple valued harmonic functions,, \emph{Indiana Univ. Math. J.}, 25 (1976), 79.   Google Scholar

[3]

L. Caffarelli, Monge-Ampère equation, Div-Curl theorems in Lagrangian coordinates, Compression and Rotation,, lecture notes., ().   Google Scholar

[4]

L. Caffarelli and Y. Y. Li, Some multi-valued solutions to Monge-Ampère equations,, \emph{Comm. Anal. Geom.}, 14 (2006), 411.   Google Scholar

[5]

L. M. Dai and J. G. Bao, Multi-valued solutions to Hessian equations,, \emph{Nonlinear Differential Equations Appl.}, 18 (2011), 447.  doi: 10.1007/s00030-011-0103-8.  Google Scholar

[6]

L. M. Dai, Multi-valued solutions to Hessian quotient equations,, \emph{Commun. Math. Sci.}, 10 (2012), 717.  doi: 10.4310/CMS.2012.v10.n2.a14.  Google Scholar

[7]

G. C. Evans, A necessary and sufficient condition of Wiener,, \emph{Amer. Math. Monthly}, 54 (1947), 151.   Google Scholar

[8]

G. C. Evans, Surfaces of minimal capacity,, \emph{Proc. Nat. Acad. Sci. U. S. A.}, 26 (1940), 489.   Google Scholar

[9]

G. C. Evans, Lectures on multiple valued harmonic functions in space,, \emph{Univ. California Publ. Math. (N.S.)}, 1 (1951), 281.   Google Scholar

[10]

W. J. Firey, Shapes of worn stones,, \emph{Mathematika}, 21 (1974), 1.   Google Scholar

[11]

C. E. Gutiérrez and Q. B. Huang, $W^{2,p}$ estimates for the parabolic Monge-Ampère equation,, \emph{Arch. Ration. Mech. Anal.}, 159 (2001), 137.  doi: 10.1007/s002050100151.  Google Scholar

[12]

C. E. Gutiérrez and Q. B. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation,, \emph{Indiana Univ. Math. J.}, 47 (1998), 1459.  doi: 10.1512/iumj.1998.47.1563.  Google Scholar

[13]

C. E. Gutiérrez and Q. B. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation,, \emph{Trans. Amer. Math. Soc.}, 352 (2000), 4381.  doi: 10.1090/S0002-9947-00-02491-0.  Google Scholar

[14]

G. Levi, Generalization of a spatial angle theorem,, (Russian) \emph{Translated from the English by Ju. V. Egorov, 26 (1971), 199.   Google Scholar

[15]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996).   Google Scholar

[16]

N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation,, (Russian) \emph{Sibirsk. Mat. $\breveZ$}, 17 (1976), 290.   Google Scholar

[17]

K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature,, \emph{Comm. Pure Appl. Math.}, 38 (1985), 867.  doi: 10.1002/cpa.3160380615.  Google Scholar

[18]

K. Tso, On an Aleksandrov-Bakelman type maximum principle for second-order parabolic equations,, \emph{Comm. Partial Differential Equations}, 10 (1985), 543.  doi: 10.1080/03605308508820388.  Google Scholar

[19]

R. H. Wang and G. L. Wang, On the existence, uniqueness and regularity of viscosity solution for the first initial boundary value problem to parabolic Monge-Ampère equations,, \emph{Northeast Math. J.}, 8 (1992), 417.   Google Scholar

[20]

R. H. Wang and G. L. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation,, \emph{J. Partial Differential Equations}, 6 (1993), 237.   Google Scholar

[21]

J. G. Xiong and J. G. Bao, On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations,, \emph{J. Differential Equations}, 250 (2011), 367.  doi: 10.1016/j.jde.2010.08.024.  Google Scholar

[22]

Y. Zhan, Viscosity Solutions of Nonlinear Degenerate Parabolic Equations and Several Applications,, Ph.D thesis, (2000).   Google Scholar

show all references

References:
[1]

L. Caffarelli, Certain multiple valued harmonic functions,, \emph{Proc. Amer. Math. Soc.}, 54 (1976), 90.   Google Scholar

[2]

L. Caffarelli, On the Hölder continuity of multiple valued harmonic functions,, \emph{Indiana Univ. Math. J.}, 25 (1976), 79.   Google Scholar

[3]

L. Caffarelli, Monge-Ampère equation, Div-Curl theorems in Lagrangian coordinates, Compression and Rotation,, lecture notes., ().   Google Scholar

[4]

L. Caffarelli and Y. Y. Li, Some multi-valued solutions to Monge-Ampère equations,, \emph{Comm. Anal. Geom.}, 14 (2006), 411.   Google Scholar

[5]

L. M. Dai and J. G. Bao, Multi-valued solutions to Hessian equations,, \emph{Nonlinear Differential Equations Appl.}, 18 (2011), 447.  doi: 10.1007/s00030-011-0103-8.  Google Scholar

[6]

L. M. Dai, Multi-valued solutions to Hessian quotient equations,, \emph{Commun. Math. Sci.}, 10 (2012), 717.  doi: 10.4310/CMS.2012.v10.n2.a14.  Google Scholar

[7]

G. C. Evans, A necessary and sufficient condition of Wiener,, \emph{Amer. Math. Monthly}, 54 (1947), 151.   Google Scholar

[8]

G. C. Evans, Surfaces of minimal capacity,, \emph{Proc. Nat. Acad. Sci. U. S. A.}, 26 (1940), 489.   Google Scholar

[9]

G. C. Evans, Lectures on multiple valued harmonic functions in space,, \emph{Univ. California Publ. Math. (N.S.)}, 1 (1951), 281.   Google Scholar

[10]

W. J. Firey, Shapes of worn stones,, \emph{Mathematika}, 21 (1974), 1.   Google Scholar

[11]

C. E. Gutiérrez and Q. B. Huang, $W^{2,p}$ estimates for the parabolic Monge-Ampère equation,, \emph{Arch. Ration. Mech. Anal.}, 159 (2001), 137.  doi: 10.1007/s002050100151.  Google Scholar

[12]

C. E. Gutiérrez and Q. B. Huang, A generalization of a theorem by Calabi to the parabolic Monge-Ampère equation,, \emph{Indiana Univ. Math. J.}, 47 (1998), 1459.  doi: 10.1512/iumj.1998.47.1563.  Google Scholar

[13]

C. E. Gutiérrez and Q. B. Huang, Geometric properties of the sections of solutions to the Monge-Ampère equation,, \emph{Trans. Amer. Math. Soc.}, 352 (2000), 4381.  doi: 10.1090/S0002-9947-00-02491-0.  Google Scholar

[14]

G. Levi, Generalization of a spatial angle theorem,, (Russian) \emph{Translated from the English by Ju. V. Egorov, 26 (1971), 199.   Google Scholar

[15]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996).   Google Scholar

[16]

N. V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation,, (Russian) \emph{Sibirsk. Mat. $\breveZ$}, 17 (1976), 290.   Google Scholar

[17]

K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature,, \emph{Comm. Pure Appl. Math.}, 38 (1985), 867.  doi: 10.1002/cpa.3160380615.  Google Scholar

[18]

K. Tso, On an Aleksandrov-Bakelman type maximum principle for second-order parabolic equations,, \emph{Comm. Partial Differential Equations}, 10 (1985), 543.  doi: 10.1080/03605308508820388.  Google Scholar

[19]

R. H. Wang and G. L. Wang, On the existence, uniqueness and regularity of viscosity solution for the first initial boundary value problem to parabolic Monge-Ampère equations,, \emph{Northeast Math. J.}, 8 (1992), 417.   Google Scholar

[20]

R. H. Wang and G. L. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation,, \emph{J. Partial Differential Equations}, 6 (1993), 237.   Google Scholar

[21]

J. G. Xiong and J. G. Bao, On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge-Ampère equations,, \emph{J. Differential Equations}, 250 (2011), 367.  doi: 10.1016/j.jde.2010.08.024.  Google Scholar

[22]

Y. Zhan, Viscosity Solutions of Nonlinear Degenerate Parabolic Equations and Several Applications,, Ph.D thesis, (2000).   Google Scholar

[1]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[3]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[4]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[9]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[10]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[11]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[12]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222

[13]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[14]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[15]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[16]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]