May  2014, 13(3): 1075-1086. doi: 10.3934/cpaa.2014.13.1075

A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian

1. 

Department DICEAM, University of Reggio Calabria, Reggio Calabria, 89100, Italy, Italy

2. 

Department MECMAT, Engineering Faculty, University of Reggio Calabria, Reggio Calabria, 89100

Received  March 2013 Revised  July 2013 Published  December 2013

We study a parametric nonlinear periodic problem driven by the scalar $p$-Laplacian. We show that if $\hat \lambda_1 >0$ is the first eigenvalue of the periodic scalar $p$-Laplacian and $\lambda> \hat \lambda_1$, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparison techniques.
Citation: Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Multiple nontrivial solutions for nonlinear periodic problems with the $p$-Laplacian,, \emph{J. Differential Equation}, 243 (2007), 504.   Google Scholar

[2]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neuamann problems,, \emph{Ann. Mat. Pura Appl.}, 186 (2009), 679.   Google Scholar

[3]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Nonlinear reasonant periodic problems with concave terms,, \emph{J. Math Anal. Appl.}, 375 (2011), 342.   Google Scholar

[4]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Positive solutions for nonlinear periodic problems with cnaceve terms,, \emph{J. Math Anal. Appl.}, 381 (2011), 866.   Google Scholar

[5]

M. Del Pino, R. Manasevich and A. Murua, Exixtence and multiplcity of solutions with prescribed period for second order quasilinear ODE,, \emph{Nonlinear Anal.}, 18 (1992), 79.   Google Scholar

[6]

P. Drabek and R. Manasevich, On the closed solution to some nonhomogeneous eigenvalue problems with $p$-Laplacian,, \emph{Differential Integral Equations}, 12 (1999), 773.   Google Scholar

[7]

N. Dunford and J. Schwartz, Linear Operators I,, Wiley-Interscience, (1958).   Google Scholar

[8]

L. Gasinski, Positive solutions for reasonant boundary value problems with the scalar $p$-Laplacian and a nonsmooth potential,, \emph{Discrete Cont. Dynam. Systems}, 17 (2007), 143.   Google Scholar

[9]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis,, Chapman & Hall/CRC, (2006).   Google Scholar

[10]

L. Gasinski and N. S. Papageorgiou, Three nontrivial soluions for periodic problems with the $p$-Laplacian and a $p$-superlinear nonlinearity,, \emph{Commun. Pure Appl. Anal.}, 8 (2009), 1421.   Google Scholar

[11]

E. Papageorgiou and N. S. Papageorgiou, Two nontrivial solutions for quasilinear periodic problems,, \emph{Proceedings Amer. Math. Soc.}, 132 (2004), 429.   Google Scholar

[12]

J. Vazquez, A strong maximum principle for some quasilinear elliptic equations,, \emph{Appl. Math. Optim.}, 12 (1984), 191.   Google Scholar

[13]

X. Yang, Multiple periodic solutions of a class of $p$-Laplacian,, \emph{J. Math. Anal. Appl.}, 314 (2006), 17.   Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Multiple nontrivial solutions for nonlinear periodic problems with the $p$-Laplacian,, \emph{J. Differential Equation}, 243 (2007), 504.   Google Scholar

[2]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neuamann problems,, \emph{Ann. Mat. Pura Appl.}, 186 (2009), 679.   Google Scholar

[3]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Nonlinear reasonant periodic problems with concave terms,, \emph{J. Math Anal. Appl.}, 375 (2011), 342.   Google Scholar

[4]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Positive solutions for nonlinear periodic problems with cnaceve terms,, \emph{J. Math Anal. Appl.}, 381 (2011), 866.   Google Scholar

[5]

M. Del Pino, R. Manasevich and A. Murua, Exixtence and multiplcity of solutions with prescribed period for second order quasilinear ODE,, \emph{Nonlinear Anal.}, 18 (1992), 79.   Google Scholar

[6]

P. Drabek and R. Manasevich, On the closed solution to some nonhomogeneous eigenvalue problems with $p$-Laplacian,, \emph{Differential Integral Equations}, 12 (1999), 773.   Google Scholar

[7]

N. Dunford and J. Schwartz, Linear Operators I,, Wiley-Interscience, (1958).   Google Scholar

[8]

L. Gasinski, Positive solutions for reasonant boundary value problems with the scalar $p$-Laplacian and a nonsmooth potential,, \emph{Discrete Cont. Dynam. Systems}, 17 (2007), 143.   Google Scholar

[9]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis,, Chapman & Hall/CRC, (2006).   Google Scholar

[10]

L. Gasinski and N. S. Papageorgiou, Three nontrivial soluions for periodic problems with the $p$-Laplacian and a $p$-superlinear nonlinearity,, \emph{Commun. Pure Appl. Anal.}, 8 (2009), 1421.   Google Scholar

[11]

E. Papageorgiou and N. S. Papageorgiou, Two nontrivial solutions for quasilinear periodic problems,, \emph{Proceedings Amer. Math. Soc.}, 132 (2004), 429.   Google Scholar

[12]

J. Vazquez, A strong maximum principle for some quasilinear elliptic equations,, \emph{Appl. Math. Optim.}, 12 (1984), 191.   Google Scholar

[13]

X. Yang, Multiple periodic solutions of a class of $p$-Laplacian,, \emph{J. Math. Anal. Appl.}, 314 (2006), 17.   Google Scholar

[1]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[2]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[3]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[4]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[10]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[14]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[17]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[18]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (5)

[Back to Top]