\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Time periodic solutions for a sixth order nonlinear parabolic equation in two space dimensions

Abstract Related Papers Cited by
  • In this paper, we study the time periodic solution of a sixth order nonlinear parabolic equation, which arises in oil-water-surfactant mixtures. Based on Leray-Schauder's fixed point theorem and Campanato spaces, we prove the existence of time-periodic solutions in two space dimensions.
    Mathematics Subject Classification: Primary: 35B10, 35K35; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Fu and B. Guo, Time periodic solution of the viscous Camassa-Holm equation, J. Math. Anal. Appl., 313 (2006), 311-321.doi: 10.1016/j.jmaa.2005.08.073.

    [2]

    M. Giaquinta and M. Struwe, On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Z., 179 (1982), 437-451.doi: 10.1007/BF01215058.

    [3]

    G. Gompper and J. Goos, Fluctuating interfaces in microemulsion and sponge phases, Phys. Rev. E, 50 (1994), 1325-1335.

    [4]

    C. Liu, Regularity of solutions for a sixth order nonlinear parabolic equation in two space dimensions, Annales Polonici Mathematici, 107 (2013), 271-291.doi: 10.4064/ap107-3-4.

    [5]

    I. Pawłow and W. Zajączkowski, A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10 (2011), 1823-1847.doi: 10.3934/cpaa.2011.10.1823.

    [6]

    G. Schimperna and I. Pawłow, On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 45 (2013), 31-63.doi: 10.1137/110835608.

    [7]

    R. Wang, The Schauder theory of the boundary value problem for parabolic problem equations, Acta Sci. Nature Univ. Jilin., 2 (1964), 35-64.

    [8]

    Y. Wang and Y. Zhang, Time-periodic solutions to a nonlinear parabolic type equation of higher order, Acta Math. Appl. Sin., Engl. Ser., 24 (2008), 129-140.doi: 10.1007/s10255-006-6174-3.

    [9]

    L. Yin, Y. Li, R. Huang and J. Yin, Time periodic solutions for a Cahn-Hilliard type equation, Mathematical and Computer Modelling, 48 (2008), 11-18.doi: 10.1016/j.mcm.2007.09.001.

    [10]

    J. Yin, Y. Li and R. Huang, The Cahn-Hilliard type equations with periodic potentials and sources, Appl. Math. Comput., 211 (2009), 211-221.doi: 10.1016/j.amc.2009.01.038.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return