May  2014, 13(3): 1105-1117. doi: 10.3934/cpaa.2014.13.1105

Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients

1. 

Departamento de Matemática Aplicada e Estatística, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo -- Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil, Brazil

Received  April 2013 Revised  October 2013 Published  December 2013

We study the asymptotic behaviour of the solutions of a class of linear neutral delay differential equations with discrete delay where the coefficients of the non neutral part are periodic functions which are rational multiples of all time delays. We show that this technique is applicable to a broader class where the coefficients of the neutral part are periodic functions as well.
Citation: Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105
References:
[1]

R. D. Driver, Some harmless delays,, \emph{Delay and functional differential equations and their applications (Proc. Conf., (1972), 103. Google Scholar

[2]

R. D. Driver, D. W. Sasser and M. L. Slater, The equation $x' (t)=ax(t)+bx(t-\tau )$ with "small'' delay,, \emph{Amer. Math. Monthly}, 80 (1973), 990. doi: 10.2307/2318773. Google Scholar

[3]

M. V. S. Frasson, On the dominance of roots of characteristic equations for neutral functional differential equations,, \emph{Appl. Math. Comput.}, 214 (2009), 66. doi: 10.1016/j.amc.2009.03.058. Google Scholar

[4]

M. V. S. Frasson and S. M. Verduyn Lunel, Large time behaviour of linear functional differential equations,, \emph{Integral Equations Operator Theory}, 47 (2003), 91. doi: 10.1007/s00020-003-1155-x. Google Scholar

[5]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations,, Applied Mathematical Sciences, 99 (1993). Google Scholar

[6]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations,, vol. 463 of Mathematics and its Applications, (1999). Google Scholar

[7]

I.-G. E. Kordonis, N. T. Niyianni and C. G. Philos, On the behavior of the solutions of scalar first order linear autonomous neutral delay differential equations,, \emph{Arch. Math. (Basel)}, 71 (1998), 454. doi: 10.1007/s000130050290. Google Scholar

[8]

J. C. Lillo, Periodic differential difference equations,, \emph{J. Math. Anal. Appl.}, 15 (1966), 434. Google Scholar

[9]

C. G. Philos, Asymptotic behaviour, nonoscillation and stability in periodic first-order linear delay differential equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 128 (1998), 1371. doi: 10.1017/S0308210500027372. Google Scholar

[10]

C. G. Philos and I. K. Purnaras, Periodic first order linear neutral delay differential equations,, \emph{Appl. Math. Comput.}, 117 (2001), 203. doi: 10.1016/S0096-3003(99)00174-5. Google Scholar

show all references

References:
[1]

R. D. Driver, Some harmless delays,, \emph{Delay and functional differential equations and their applications (Proc. Conf., (1972), 103. Google Scholar

[2]

R. D. Driver, D. W. Sasser and M. L. Slater, The equation $x' (t)=ax(t)+bx(t-\tau )$ with "small'' delay,, \emph{Amer. Math. Monthly}, 80 (1973), 990. doi: 10.2307/2318773. Google Scholar

[3]

M. V. S. Frasson, On the dominance of roots of characteristic equations for neutral functional differential equations,, \emph{Appl. Math. Comput.}, 214 (2009), 66. doi: 10.1016/j.amc.2009.03.058. Google Scholar

[4]

M. V. S. Frasson and S. M. Verduyn Lunel, Large time behaviour of linear functional differential equations,, \emph{Integral Equations Operator Theory}, 47 (2003), 91. doi: 10.1007/s00020-003-1155-x. Google Scholar

[5]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations,, Applied Mathematical Sciences, 99 (1993). Google Scholar

[6]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations,, vol. 463 of Mathematics and its Applications, (1999). Google Scholar

[7]

I.-G. E. Kordonis, N. T. Niyianni and C. G. Philos, On the behavior of the solutions of scalar first order linear autonomous neutral delay differential equations,, \emph{Arch. Math. (Basel)}, 71 (1998), 454. doi: 10.1007/s000130050290. Google Scholar

[8]

J. C. Lillo, Periodic differential difference equations,, \emph{J. Math. Anal. Appl.}, 15 (1966), 434. Google Scholar

[9]

C. G. Philos, Asymptotic behaviour, nonoscillation and stability in periodic first-order linear delay differential equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 128 (1998), 1371. doi: 10.1017/S0308210500027372. Google Scholar

[10]

C. G. Philos and I. K. Purnaras, Periodic first order linear neutral delay differential equations,, \emph{Appl. Math. Comput.}, 117 (2001), 203. doi: 10.1016/S0096-3003(99)00174-5. Google Scholar

[1]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[2]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[3]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[4]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[5]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[6]

Hernán R. Henríquez, Claudio Cuevas, Alejandro Caicedo. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2031-2068. doi: 10.3934/cpaa.2013.12.2031

[7]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[8]

Jean-François Couchouron, Mikhail Kamenskii, Paolo Nistri. An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1845-1859. doi: 10.3934/cpaa.2013.12.1845

[9]

Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038

[10]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[11]

Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065

[12]

Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two time-scales. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5831-5848. doi: 10.3934/dcdsb.2019108

[13]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[14]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2019166

[15]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[16]

Hernán R. Henríquez, Claudio Cuevas, Juan C. Pozo, Herme Soto. Existence of solutions for a class of abstract neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2455-2482. doi: 10.3934/dcds.2017106

[17]

T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167

[18]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[19]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[20]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]