May  2014, 13(3): 1105-1117. doi: 10.3934/cpaa.2014.13.1105

Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients

1. 

Departamento de Matemática Aplicada e Estatística, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo -- Campus de São Carlos, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil, Brazil

Received  April 2013 Revised  October 2013 Published  December 2013

We study the asymptotic behaviour of the solutions of a class of linear neutral delay differential equations with discrete delay where the coefficients of the non neutral part are periodic functions which are rational multiples of all time delays. We show that this technique is applicable to a broader class where the coefficients of the neutral part are periodic functions as well.
Citation: Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105
References:
[1]

R. D. Driver, Some harmless delays,, \emph{Delay and functional differential equations and their applications (Proc. Conf., (1972), 103.   Google Scholar

[2]

R. D. Driver, D. W. Sasser and M. L. Slater, The equation $x' (t)=ax(t)+bx(t-\tau )$ with "small'' delay,, \emph{Amer. Math. Monthly}, 80 (1973), 990.  doi: 10.2307/2318773.  Google Scholar

[3]

M. V. S. Frasson, On the dominance of roots of characteristic equations for neutral functional differential equations,, \emph{Appl. Math. Comput.}, 214 (2009), 66.  doi: 10.1016/j.amc.2009.03.058.  Google Scholar

[4]

M. V. S. Frasson and S. M. Verduyn Lunel, Large time behaviour of linear functional differential equations,, \emph{Integral Equations Operator Theory}, 47 (2003), 91.  doi: 10.1007/s00020-003-1155-x.  Google Scholar

[5]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations,, Applied Mathematical Sciences, 99 (1993).   Google Scholar

[6]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations,, vol. 463 of Mathematics and its Applications, (1999).   Google Scholar

[7]

I.-G. E. Kordonis, N. T. Niyianni and C. G. Philos, On the behavior of the solutions of scalar first order linear autonomous neutral delay differential equations,, \emph{Arch. Math. (Basel)}, 71 (1998), 454.  doi: 10.1007/s000130050290.  Google Scholar

[8]

J. C. Lillo, Periodic differential difference equations,, \emph{J. Math. Anal. Appl.}, 15 (1966), 434.   Google Scholar

[9]

C. G. Philos, Asymptotic behaviour, nonoscillation and stability in periodic first-order linear delay differential equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 128 (1998), 1371.  doi: 10.1017/S0308210500027372.  Google Scholar

[10]

C. G. Philos and I. K. Purnaras, Periodic first order linear neutral delay differential equations,, \emph{Appl. Math. Comput.}, 117 (2001), 203.  doi: 10.1016/S0096-3003(99)00174-5.  Google Scholar

show all references

References:
[1]

R. D. Driver, Some harmless delays,, \emph{Delay and functional differential equations and their applications (Proc. Conf., (1972), 103.   Google Scholar

[2]

R. D. Driver, D. W. Sasser and M. L. Slater, The equation $x' (t)=ax(t)+bx(t-\tau )$ with "small'' delay,, \emph{Amer. Math. Monthly}, 80 (1973), 990.  doi: 10.2307/2318773.  Google Scholar

[3]

M. V. S. Frasson, On the dominance of roots of characteristic equations for neutral functional differential equations,, \emph{Appl. Math. Comput.}, 214 (2009), 66.  doi: 10.1016/j.amc.2009.03.058.  Google Scholar

[4]

M. V. S. Frasson and S. M. Verduyn Lunel, Large time behaviour of linear functional differential equations,, \emph{Integral Equations Operator Theory}, 47 (2003), 91.  doi: 10.1007/s00020-003-1155-x.  Google Scholar

[5]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations,, Applied Mathematical Sciences, 99 (1993).   Google Scholar

[6]

V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional-Differential Equations,, vol. 463 of Mathematics and its Applications, (1999).   Google Scholar

[7]

I.-G. E. Kordonis, N. T. Niyianni and C. G. Philos, On the behavior of the solutions of scalar first order linear autonomous neutral delay differential equations,, \emph{Arch. Math. (Basel)}, 71 (1998), 454.  doi: 10.1007/s000130050290.  Google Scholar

[8]

J. C. Lillo, Periodic differential difference equations,, \emph{J. Math. Anal. Appl.}, 15 (1966), 434.   Google Scholar

[9]

C. G. Philos, Asymptotic behaviour, nonoscillation and stability in periodic first-order linear delay differential equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 128 (1998), 1371.  doi: 10.1017/S0308210500027372.  Google Scholar

[10]

C. G. Philos and I. K. Purnaras, Periodic first order linear neutral delay differential equations,, \emph{Appl. Math. Comput.}, 117 (2001), 203.  doi: 10.1016/S0096-3003(99)00174-5.  Google Scholar

[1]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[17]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[20]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]