• Previous Article
    The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions
  • CPAA Home
  • This Issue
  • Next Article
    Averaging of a multi-layer quasi-geostrophic equations with oscillating external forces
May  2014, 13(3): 1141-1165. doi: 10.3934/cpaa.2014.13.1141

Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications

1. 

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Caixa postal 668, 13560-970 São Carlos, São Paulo, Brazil

2. 

BCAM Basque Center for Applied Mathematics, Mazarredo 14, E-48009 Bilbao, Basque Country

Received  April 2013 Revised  September 2013 Published  December 2013

This article is a continuation of our previous work [5], where we formulated general existence theorems for pullback exponential attractors for asymptotically compact evolution processes in Banach spaces and discussed its implications in the autonomous case. We now study properties of the attractors and use our theoretical results to prove the existence of pullback exponential attractors in two examples, where previous results do not apply.
Citation: Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1141-1165. doi: 10.3934/cpaa.2014.13.1141
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, 2nd edition, (2003). Google Scholar

[2]

J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent ,, \emph{Comm. Partial Differential Equations}, 17 (1992), 841. doi: 10.1080/03605309208820866. Google Scholar

[3]

T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes ,, \emph{Nonlinear Anal.}, 72 (2010), 1967. doi: 10.1016/j.na.2009.09.037. Google Scholar

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, \emph{Appl. Math. Sci.}, 182 (2012). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results ,, \emph{Commun. Pure and Appl. Anal.}, 12 (2013), 3047. doi: 10.3934/cpaa.2013.12.3047. Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,, Amer. Math. Soc., (2002). Google Scholar

[7]

H. Crauel, A. Debussche and F. Flandoli, Random attractors ,, \emph{J. Dynam. Differential Equations}, 9 (1997), 307. doi: 10.1007/BF02219225. Google Scholar

[8]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations ,, \emph{J. Math. Anal. Appl.}, 381 (2011), 748. doi: 10.1016/j.jmaa.2011.03.053. Google Scholar

[9]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, Research in Applied Mathematics, (1994). Google Scholar

[10]

D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Operators,, Cambridge University Press, (1996). doi: 10.1017/CBO9780511662201. Google Scholar

[11]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R ^3$ ,, \emph{C. R. Acad. Sci. Paris Sr. I Math.}, 330 (2000), 713. doi: 10.1016/S0764-4442(00)00259-7. Google Scholar

[12]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems ,, \emph{Proc. R. Soc. Edinburgh Sect. A}, 135A (2005), 703. doi: 10.1017/S030821050000408X. Google Scholar

[13]

M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipative systems ,, \emph{J. Math. Soc. Japan}, 63 (2011), 647. doi: 10.2969/jmsj/06320647. Google Scholar

[14]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988). Google Scholar

[15]

A. N. Kolmogorov and V. M. Tihomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces ,, \emph{Amer. Math. Soc. Transl. Ser. 2}, 17 (1961), 277. Google Scholar

[16]

J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors ,, \emph{Discrete Contin. Dyn. Syst.}, 26 (2010), 1329. doi: 10.3934/dcds.2010.26.1329. Google Scholar

[17]

J. A. Langa, J. C. Robinson and A. Suárez, Stability, instability and bifurcation phenomena in non-autonomous differential equations ,, \emph{Nonlinearity}, 15 (2002), 887. doi: 10.1088/0951-7715/15/3/322. Google Scholar

[18]

J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations ,, \emph{Stoch. Dyn.}, 4 (2004), 385. doi: 10.1142/S0219493704001127. Google Scholar

[19]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems ,, \emph{Nonlinear Anal.}, 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065. Google Scholar

[20]

X. Mora, Semilinear parabolic problems define semiflows on $C^k$ spaces ,, \emph{Trans. Amer. Math. Soc.}, 278 (1983), 21. doi: 10.2307/1999300. Google Scholar

[21]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992). Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[23]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd edition, (1997). Google Scholar

[24]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications,, Springer-Verlag, (2010). doi: 10.1007/978-3-642-04631-5. Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, 2nd edition, (2003). Google Scholar

[2]

J. Arrieta, A. N. Carvalho and J. K. Hale, A damped hyperbolic equation with critical exponent ,, \emph{Comm. Partial Differential Equations}, 17 (1992), 841. doi: 10.1080/03605309208820866. Google Scholar

[3]

T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes ,, \emph{Nonlinear Anal.}, 72 (2010), 1967. doi: 10.1016/j.na.2009.09.037. Google Scholar

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, \emph{Appl. Math. Sci.}, 182 (2012). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: theoretical results ,, \emph{Commun. Pure and Appl. Anal.}, 12 (2013), 3047. doi: 10.3934/cpaa.2013.12.3047. Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,, Amer. Math. Soc., (2002). Google Scholar

[7]

H. Crauel, A. Debussche and F. Flandoli, Random attractors ,, \emph{J. Dynam. Differential Equations}, 9 (1997), 307. doi: 10.1007/BF02219225. Google Scholar

[8]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations ,, \emph{J. Math. Anal. Appl.}, 381 (2011), 748. doi: 10.1016/j.jmaa.2011.03.053. Google Scholar

[9]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations,, Research in Applied Mathematics, (1994). Google Scholar

[10]

D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Operators,, Cambridge University Press, (1996). doi: 10.1017/CBO9780511662201. Google Scholar

[11]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R ^3$ ,, \emph{C. R. Acad. Sci. Paris Sr. I Math.}, 330 (2000), 713. doi: 10.1016/S0764-4442(00)00259-7. Google Scholar

[12]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems ,, \emph{Proc. R. Soc. Edinburgh Sect. A}, 135A (2005), 703. doi: 10.1017/S030821050000408X. Google Scholar

[13]

M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipative systems ,, \emph{J. Math. Soc. Japan}, 63 (2011), 647. doi: 10.2969/jmsj/06320647. Google Scholar

[14]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988). Google Scholar

[15]

A. N. Kolmogorov and V. M. Tihomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in functional spaces ,, \emph{Amer. Math. Soc. Transl. Ser. 2}, 17 (1961), 277. Google Scholar

[16]

J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors ,, \emph{Discrete Contin. Dyn. Syst.}, 26 (2010), 1329. doi: 10.3934/dcds.2010.26.1329. Google Scholar

[17]

J. A. Langa, J. C. Robinson and A. Suárez, Stability, instability and bifurcation phenomena in non-autonomous differential equations ,, \emph{Nonlinearity}, 15 (2002), 887. doi: 10.1088/0951-7715/15/3/322. Google Scholar

[18]

J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations ,, \emph{Stoch. Dyn.}, 4 (2004), 385. doi: 10.1142/S0219493704001127. Google Scholar

[19]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems ,, \emph{Nonlinear Anal.}, 71 (2009), 3956. doi: 10.1016/j.na.2009.02.065. Google Scholar

[20]

X. Mora, Semilinear parabolic problems define semiflows on $C^k$ spaces ,, \emph{Trans. Amer. Math. Soc.}, 278 (1983), 21. doi: 10.2307/1999300. Google Scholar

[21]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992). Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[23]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd edition, (1997). Google Scholar

[24]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications,, Springer-Verlag, (2010). doi: 10.1007/978-3-642-04631-5. Google Scholar

[1]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[2]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[3]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[4]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[5]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[6]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[7]

Alexandre N. Carvalho, José A. Langa, James C. Robinson. Non-autonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 703-747. doi: 10.3934/dcdsb.2015.20.703

[8]

Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543

[9]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[10]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[11]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019221

[12]

Peter E. Kloeden, José Real, Chunyou Sun. Robust exponential attractors for non-autonomous equations with memory. Communications on Pure & Applied Analysis, 2011, 10 (3) : 885-915. doi: 10.3934/cpaa.2011.10.885

[13]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[14]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[15]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[16]

Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085

[17]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[18]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[19]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

[20]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

[Back to Top]