May  2014, 13(3): 1167-1186. doi: 10.3934/cpaa.2014.13.1167

The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions

1. 

School of Mathematical Sciences, Fudan University, Shanghai, 200433, China, China

Received  April 2013 Revised  September 2013 Published  December 2013

We study the Cauchy problem for systems of quasilinear wave equations with multiple propagation speeds in four space dimensions. The nonlinear term in this problem may explicitly depends on the unknown function itself. By some new $L^{\infty}_{t}L^2_{x}$ estimates of the unknown function, combining with some Klainerman--Sideris type weighted estimates, we get the sharp lower bound of lifespan $T_{\varepsilon}\geq \exp{(\frac{c}{\varepsilon^2})}$ for the quasilinear system.
Citation: Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167
References:
[1]

Y. Du and Z. A. Yao, The lifespan for quasi-linear wave equations with multiple-speeds in space dimensions $n\geq3$ , Manuscripta Math., 132 (2010), 343-364. doi: 10.1007/s00229-010-0350-8.

[2]

Y. Du and Y. Zhou, The lifespan for nonlinear wave equations with multiple propagations speeds in 3D , Nonlinear Anal., 68 (2008), 1793-1801. doi: 10.1016/j.na.2007.01.012.

[3]

K. Hidano, An elementary proof of global or almost global existence for quasilinear wave equations , Tohoku Math. J., 56 (2004), 271-287. doi: 10.2748/tmj/1113246554.

[4]

K. Hidano, J. Metcalfe, H. Smith, C. D. Sogge and Y. Zhou, On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles , Trans. Amer. Math. Soc., 362 (2010), 2789-2809. doi: 10.1090/S0002-9947-09-05053-3.

[5]

L. Hörmander, On the fully nonlinear cauchy problem with small data II , in Microlocal Analysis and Nonlinear Waves, IMA Vol. Math. Appl., 30 (eds. Michael Beals, Richard B. Melrose and Jeffrey Rauch), Springer-Verlag, (1991), 51-81. doi: 10.1007/978-1-4613-9136-4_6.

[6]

S. Katayama, Global and almost global existence for systems of nonlinear wave equations with different propagation speeds , Differential Integral Equations, 17 (2004), 1043-1078.

[7]

S. Katayama, Global existence for a class of systems of nonlinear wave equations in three dimensions , Chinese Ann. Math. B, 25 (2004), 463-482. doi: 10.1142/S0252959904000421.

[8]

S. Katayama, Global existence for systems of wave equations with nonresonant nonlinearities and null forms , J. Differential Equations, 209 (2005), 140-171. doi: 10.1016/j.jde.2004.09.012.

[9]

S. Klainerman, Uniform decay estimate and the Lorentz invariance of the classical wave equations , Comm. Pure Appl. Math., 38 (1985), 321-332.

[10]

S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D , Comm. Pure Appl. Math., 49 (1996), 307-321. doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.

[11]

T. T. Li and Y. M. Chen, Global Classical Solutions for Nonlinear Evolution Equations, Longman Scientific & Technical UK, 1992.

[12]

T. T. Li and Y. Zhou, A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions , Indiana Univ. Math. J., 44 (1995), 1207-1248. doi: 10.1512/iumj.1995.44.2026.

[13]

H. Lindblad and C. D. Sogge, Long time existence for small amplitude semilinear wave equation , Amer. J. Math., 118 (1996), 1047-1135. doi: 10.1353/ajm.1996.0042.

[14]

J.Metcalfe and C. D. Sogge, Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles , Discrete Contin. Dyn. Syst., 28 (2010), 1589-1601. doi: 10.3934/dcds.2010.28.1589.

[15]

C. X. Miao, J. H. Wu and Z. F. Zhang, Littlewood-Paley Theory and Its Application in Hydrodynamic Equations (Chinese Edition), Monographs on Modern Pure Mathematics 142, Beijing, Science Press, 2012.

[16]

T. C. Sideris and S.-Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds , SIAM J. Math. Anal., 33 (2001), 477-488. doi: 10.1137/S0036141000378966.

[17]

H. Takamura and K. Wakasa, The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions , J. Differential Equations, 251 (2011), 1157-1171. doi: 10.1016/j.jde.2011.03.024.

[18]

C. B. Wang and X. Yu, Recent works on the Strauss conjecture , in Recent Advances in Harmonic Analysis and Partial Differential Equations, Contemp. Math. 581 (eds. Andrea R. Nahmod et al.), Amer. Math. Soc., Providence, RI, (2012), 235-256. doi: 10.1090/conm/581/11497.

show all references

References:
[1]

Y. Du and Z. A. Yao, The lifespan for quasi-linear wave equations with multiple-speeds in space dimensions $n\geq3$ , Manuscripta Math., 132 (2010), 343-364. doi: 10.1007/s00229-010-0350-8.

[2]

Y. Du and Y. Zhou, The lifespan for nonlinear wave equations with multiple propagations speeds in 3D , Nonlinear Anal., 68 (2008), 1793-1801. doi: 10.1016/j.na.2007.01.012.

[3]

K. Hidano, An elementary proof of global or almost global existence for quasilinear wave equations , Tohoku Math. J., 56 (2004), 271-287. doi: 10.2748/tmj/1113246554.

[4]

K. Hidano, J. Metcalfe, H. Smith, C. D. Sogge and Y. Zhou, On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles , Trans. Amer. Math. Soc., 362 (2010), 2789-2809. doi: 10.1090/S0002-9947-09-05053-3.

[5]

L. Hörmander, On the fully nonlinear cauchy problem with small data II , in Microlocal Analysis and Nonlinear Waves, IMA Vol. Math. Appl., 30 (eds. Michael Beals, Richard B. Melrose and Jeffrey Rauch), Springer-Verlag, (1991), 51-81. doi: 10.1007/978-1-4613-9136-4_6.

[6]

S. Katayama, Global and almost global existence for systems of nonlinear wave equations with different propagation speeds , Differential Integral Equations, 17 (2004), 1043-1078.

[7]

S. Katayama, Global existence for a class of systems of nonlinear wave equations in three dimensions , Chinese Ann. Math. B, 25 (2004), 463-482. doi: 10.1142/S0252959904000421.

[8]

S. Katayama, Global existence for systems of wave equations with nonresonant nonlinearities and null forms , J. Differential Equations, 209 (2005), 140-171. doi: 10.1016/j.jde.2004.09.012.

[9]

S. Klainerman, Uniform decay estimate and the Lorentz invariance of the classical wave equations , Comm. Pure Appl. Math., 38 (1985), 321-332.

[10]

S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D , Comm. Pure Appl. Math., 49 (1996), 307-321. doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.

[11]

T. T. Li and Y. M. Chen, Global Classical Solutions for Nonlinear Evolution Equations, Longman Scientific & Technical UK, 1992.

[12]

T. T. Li and Y. Zhou, A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions , Indiana Univ. Math. J., 44 (1995), 1207-1248. doi: 10.1512/iumj.1995.44.2026.

[13]

H. Lindblad and C. D. Sogge, Long time existence for small amplitude semilinear wave equation , Amer. J. Math., 118 (1996), 1047-1135. doi: 10.1353/ajm.1996.0042.

[14]

J.Metcalfe and C. D. Sogge, Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles , Discrete Contin. Dyn. Syst., 28 (2010), 1589-1601. doi: 10.3934/dcds.2010.28.1589.

[15]

C. X. Miao, J. H. Wu and Z. F. Zhang, Littlewood-Paley Theory and Its Application in Hydrodynamic Equations (Chinese Edition), Monographs on Modern Pure Mathematics 142, Beijing, Science Press, 2012.

[16]

T. C. Sideris and S.-Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds , SIAM J. Math. Anal., 33 (2001), 477-488. doi: 10.1137/S0036141000378966.

[17]

H. Takamura and K. Wakasa, The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions , J. Differential Equations, 251 (2011), 1157-1171. doi: 10.1016/j.jde.2011.03.024.

[18]

C. B. Wang and X. Yu, Recent works on the Strauss conjecture , in Recent Advances in Harmonic Analysis and Partial Differential Equations, Contemp. Math. 581 (eds. Andrea R. Nahmod et al.), Amer. Math. Soc., Providence, RI, (2012), 235-256. doi: 10.1090/conm/581/11497.

[1]

Jie Yang, Sen Ming, Wei Han, Xiongmei Fan. Lifespan estimates of solutions to quasilinear wave equations with damping and negative mass term. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022022

[2]

Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265

[3]

Ge Zu, Bin Guo. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy. Evolution Equations and Control Theory, 2021, 10 (2) : 259-270. doi: 10.3934/eect.2020065

[4]

Dongbing Zha. A note on quasilinear wave equations in two space dimensions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2855-2871. doi: 10.3934/dcds.2016.36.2855

[5]

Fathi Dkhil, Angela Stevens. Traveling wave speeds in rapidly oscillating media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 89-108. doi: 10.3934/dcds.2009.25.89

[6]

Yuusuke Sugiyama. Degeneracy in finite time of 1D quasilinear wave equations Ⅱ. Evolution Equations and Control Theory, 2017, 6 (4) : 615-628. doi: 10.3934/eect.2017031

[7]

Jason Metcalfe, Jacob Perry. Global solutions to quasilinear wave equations in homogeneous waveguides with Neumann boundary conditions. Communications on Pure and Applied Analysis, 2012, 11 (2) : 547-556. doi: 10.3934/cpaa.2012.11.547

[8]

Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 781-792. doi: 10.3934/eect.2021025

[9]

Francisco Odair de Paiva. Multiple solutions for a class of quasilinear problems. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 669-680. doi: 10.3934/dcds.2006.15.669

[10]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[11]

Linghai Zhang, Ping-Shi Wu, Melissa Anne Stoner. Influence of neurobiological mechanisms on speeds of traveling wave fronts in mathematical neuroscience. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 1003-1037. doi: 10.3934/dcdsb.2011.16.1003

[12]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[13]

Jason Metcalfe, Christopher D. Sogge. Global existence for high dimensional quasilinear wave equations exterior to star-shaped obstacles. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1589-1601. doi: 10.3934/dcds.2010.28.1589

[14]

Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2-D quasilinear wave equations. Communications on Pure and Applied Analysis, 2017, 16 (3) : 719-744. doi: 10.3934/cpaa.2017035

[15]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[16]

Dongsheng Kang. Quasilinear systems involving multiple critical exponents and potentials. Communications on Pure and Applied Analysis, 2013, 12 (2) : 695-710. doi: 10.3934/cpaa.2013.12.695

[17]

Feng Cao, Wenxian Shen. Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4697-4727. doi: 10.3934/dcds.2017202

[18]

Matt Holzer. A proof of anomalous invasion speeds in a system of coupled Fisher-KPP equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2069-2084. doi: 10.3934/dcds.2016.36.2069

[19]

Renata Bunoiu, Radu Precup, Csaba Varga. Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials. Communications on Pure and Applied Analysis, 2017, 16 (3) : 953-972. doi: 10.3934/cpaa.2017046

[20]

Wei Dai, Daoyuan Fang, Chengbo Wang. Lifespan of solutions to the Strauss type wave system on asymptotically flat space-times. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4985-4999. doi: 10.3934/dcds.2020208

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]