• Previous Article
    Incompressible limit for the full magnetohydrodynamics flows under Strong Stratification on unbounded domains
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotic behavior of positive solutions for a class of quasilinear elliptic equations with general nonlinearities
January  2014, 13(1): 119-133. doi: 10.3934/cpaa.2014.13.119

The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction

1. 

Dipartimento di Matematica Pura e Applicata, Università degli Studi di Padova, Via Belzoni, 7, 35131, Padova

Received  May 2012 Revised  August 2012 Published  July 2013

We prove a comparison principle for viscosity solutions of a fully nonlinear equation satisfying a condition of non-degeneracy in a fixed direction. We apply these results to prove that a continuous solution of the corresponding Dirichlet problem exists. To obtain the existence of barrier functions and well-posedness, we find suitable explicit assumptions on the domain and on the ellipticity constants of the operator.
Citation: Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure & Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119
References:
[1]

M. Bardi and S. Bottacin, On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control,, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 13.   Google Scholar

[2]

M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi Bellman Equations,", Systems and Control: Foundations and Applications. Birkhauser, (1997).   Google Scholar

[3]

M. Bardi and P. Mannucci, On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations,, Commun. Pure Appl. Anal., 5 (2006), 709.   Google Scholar

[4]

M. Bardi and P. Mannucci, Comparison principles for subelliptic equations of Monge-Ampère type,, Boll. Unione Mat. Ital., 9 (2008), 489.   Google Scholar

[5]

M. Bardi and P. Mannucci, Comparison principles for equations of Monge-Ampère type in Carnot groups: a direct proof,, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 41.   Google Scholar

[6]

M. Bardi and P. Mannucci, Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of Monge-Ampère type,, to appear on Forum Math., (2013), 2013.  doi: DOI: 10.1515/forum-2013-0067.  Google Scholar

[7]

F. H. Beatrous, T. J. Bieske and J. J. Manfredi, The maximum principle for vector fields, in, Amer. Math. Soc., Providence, RI, 2005, 1-9., 370 (2005), 1.   Google Scholar

[8]

T. Bieske, On infinite harmonic functions on the Heisenberg group,, Comm. Partial Differential Equations, 27 (2002), 727.   Google Scholar

[9]

T. Bieske, Viscosity solutions on Grushin-type planes,, Illinois J. Math., 46 (2002), 893.   Google Scholar

[10]

T. Bieske and L. Capogna, The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathodory metrics,, Trans. Amer. Math. Soc., 357 (2005), 795.   Google Scholar

[11]

I. Birindelli, I. Capuzzo Dolcetta and A. Cutrì, Indefinite semi-linear equations on the Heisenberg group: a priori bounds and existence,, Comm. Partial Differential Equations, 23 (1998), 1123.   Google Scholar

[12]

I. Birindelli and B. Stroffolini, Existence theorems for fully nonlinear equations in the Heisenberg group,, Subelliptic PDE's and applications to geometry and finance, 6 (2007), 49.   Google Scholar

[13]

A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory For Their Sub-Laplacians,", Springer, (2007).   Google Scholar

[14]

M. G. Crandall, Viscosity solutions: a primer,, In, (1660).   Google Scholar

[15]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.   Google Scholar

[16]

A. Cutrì and N. Tchou, Barrier functions for Pucci-Heisenberg operators and applications,, Int. J. Dyn. Syst. Differ. Equ., 1, 2 (2007), 117.   Google Scholar

[17]

G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups,", Princeton University Press, (1982).   Google Scholar

[18]

C. E. Gutierrez and A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group,, Comm. Partial Differential Equations, 29 (2004), 1305.   Google Scholar

[19]

L. Hörmander, Hypoelliptic Second Order Differential Equations,, Acta Math. Uppsala, 119 (1967), 147.   Google Scholar

[20]

M. A. Katsoulakis, A representation formula and regularizing properties for viscosity solutions of second-order fully nonlinear degenerate parabolic equations,, Nonlinear Analysis, 24 (1995), 147.   Google Scholar

[21]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Diff. Eq., 83 (1990), 26.   Google Scholar

[22]

R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations,, Arch. Rational Mech., 101 (1988), 1.   Google Scholar

[23]

J. J. Manfredi, Nonlinear subelliptic equations on Carnot groups,, Notes of a course given at the Third School on Analysis and Geometry in Metric Spaces, (2003).   Google Scholar

[24]

C. Y. Wang, The Aronsson equation for absolute minimizers of $L^\infty$-functionals associated with vector fields satisfying Hörmander's condition,, Trans. Amer. Math. Soc. 359, 1 (2007), 91.   Google Scholar

show all references

References:
[1]

M. Bardi and S. Bottacin, On the Dirichlet problem for nonlinear degenerate elliptic equations and applications to optimal control,, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 13.   Google Scholar

[2]

M. Bardi and I. Capuzzo Dolcetta, "Optimal Control and Viscosity Solutions of Hamilton-Jacobi Bellman Equations,", Systems and Control: Foundations and Applications. Birkhauser, (1997).   Google Scholar

[3]

M. Bardi and P. Mannucci, On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations,, Commun. Pure Appl. Anal., 5 (2006), 709.   Google Scholar

[4]

M. Bardi and P. Mannucci, Comparison principles for subelliptic equations of Monge-Ampère type,, Boll. Unione Mat. Ital., 9 (2008), 489.   Google Scholar

[5]

M. Bardi and P. Mannucci, Comparison principles for equations of Monge-Ampère type in Carnot groups: a direct proof,, Lecture Notes of Seminario Interdisciplinare di Matematica, 7 (2008), 41.   Google Scholar

[6]

M. Bardi and P. Mannucci, Comparison principles and Dirichlet problem for fully nonlinear degenerate equations of Monge-Ampère type,, to appear on Forum Math., (2013), 2013.  doi: DOI: 10.1515/forum-2013-0067.  Google Scholar

[7]

F. H. Beatrous, T. J. Bieske and J. J. Manfredi, The maximum principle for vector fields, in, Amer. Math. Soc., Providence, RI, 2005, 1-9., 370 (2005), 1.   Google Scholar

[8]

T. Bieske, On infinite harmonic functions on the Heisenberg group,, Comm. Partial Differential Equations, 27 (2002), 727.   Google Scholar

[9]

T. Bieske, Viscosity solutions on Grushin-type planes,, Illinois J. Math., 46 (2002), 893.   Google Scholar

[10]

T. Bieske and L. Capogna, The Aronsson-Euler equation for absolutely minimizing Lipschitz extensions with respect to Carnot-Carathodory metrics,, Trans. Amer. Math. Soc., 357 (2005), 795.   Google Scholar

[11]

I. Birindelli, I. Capuzzo Dolcetta and A. Cutrì, Indefinite semi-linear equations on the Heisenberg group: a priori bounds and existence,, Comm. Partial Differential Equations, 23 (1998), 1123.   Google Scholar

[12]

I. Birindelli and B. Stroffolini, Existence theorems for fully nonlinear equations in the Heisenberg group,, Subelliptic PDE's and applications to geometry and finance, 6 (2007), 49.   Google Scholar

[13]

A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, "Stratified Lie Groups and Potential Theory For Their Sub-Laplacians,", Springer, (2007).   Google Scholar

[14]

M. G. Crandall, Viscosity solutions: a primer,, In, (1660).   Google Scholar

[15]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.   Google Scholar

[16]

A. Cutrì and N. Tchou, Barrier functions for Pucci-Heisenberg operators and applications,, Int. J. Dyn. Syst. Differ. Equ., 1, 2 (2007), 117.   Google Scholar

[17]

G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups,", Princeton University Press, (1982).   Google Scholar

[18]

C. E. Gutierrez and A. Montanari, Maximum and comparison principles for convex functions on the Heisenberg group,, Comm. Partial Differential Equations, 29 (2004), 1305.   Google Scholar

[19]

L. Hörmander, Hypoelliptic Second Order Differential Equations,, Acta Math. Uppsala, 119 (1967), 147.   Google Scholar

[20]

M. A. Katsoulakis, A representation formula and regularizing properties for viscosity solutions of second-order fully nonlinear degenerate parabolic equations,, Nonlinear Analysis, 24 (1995), 147.   Google Scholar

[21]

H. Ishii and P. L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,, J. Diff. Eq., 83 (1990), 26.   Google Scholar

[22]

R. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations,, Arch. Rational Mech., 101 (1988), 1.   Google Scholar

[23]

J. J. Manfredi, Nonlinear subelliptic equations on Carnot groups,, Notes of a course given at the Third School on Analysis and Geometry in Metric Spaces, (2003).   Google Scholar

[24]

C. Y. Wang, The Aronsson equation for absolute minimizers of $L^\infty$-functionals associated with vector fields satisfying Hörmander's condition,, Trans. Amer. Math. Soc. 359, 1 (2007), 91.   Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[3]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[6]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[7]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[8]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[9]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[13]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[14]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[15]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[16]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[17]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[20]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]