-
Previous Article
On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity
- CPAA Home
- This Issue
-
Next Article
On improvement of summability properties in nonautonomous Kolmogorov equations
On the orbital stability of fractional Schrödinger equations
1. | Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756 |
2. | Department of Mathematics, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia |
3. | Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea |
4. | Department of Applied Physics, Waseda University, Tokyo, 169-8555 |
References:
[1] |
J. P. Borgna and D. F. Rial, Existence of ground states for a one dimensional relativistic Schrodinger equations,, \emph{J. Math. Phys.}, 53 (2012).
doi: 10.1063/1.4726198. |
[2] |
T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).
|
[3] |
Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, \emph{Funkcialaj Ekvacioj}, 56 (2013), 193. Google Scholar |
[4] |
Y. Cho, G. Hwang and T. Ozawa, Global well-posedness of critical nonlinear Schrödinger equations below $L^2$,, \emph{DCDS-A}, 33 (2013), 1389.
doi: 10.3934/dcds.2013.33.1389. |
[5] |
Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, to appear in \emph{Indina Univ. Math. J.}, (). Google Scholar |
[6] |
Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, \emph{Contem. Math.}, 11 (2009), 355.
doi: 10.1142/S0219199709003399. |
[7] |
Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1121.
doi: 10.3934/cpaa.2011.10.1121. |
[8] |
Daoyuan Fang and Chengbo Wang, Weighted strichartz estimates with angular regularity and their applications,, \emph{Forum Mathematicum}, 23 (2011), 181.
doi: 10.1515/FORM.2011.009. |
[9] |
P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, \emph{P. Roy. Soc. Edinburgh A}, 142 (2012), 1237.
doi: 10.1017/S0308210511000746. |
[10] |
B. Guo and D. Huang, Existence and stability of standing waves for nonlinear fractional Schr\"odinger equations,, \emph{J. Math. Phys.}, 53 (2012).
doi: 10.1063/1.4746806. |
[11] |
H. Hajaiej, Existence of minimizers of functionals involving the fractional gradient in the absence of compactness, symmetry and monotonicity,, \emph{J. Math. Anal. Appl.}, 399 (2013), 17.
doi: 10.1016/j.jmaa.2012.09.023. |
[12] |
H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gargliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations,, \emph{RIMS Kokyuroku Bessatsu}, B26 (2011), 159.
|
[13] |
A. D. Ionescu and F. Pusateri, Nolinear fractional Schrödinger equations in one dimension,, \emph{To appear in J. Funct. Anal.}, ().
doi: 10.1016/j.jfa.2013.08.027. |
[14] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, II,, \emph{Ann. Inst. H. Poincare' Anal. Non Line'aire}, 1 (1984), 109.
|
[15] |
T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations,, \emph{Cal. Var. PDE.}, 25 (2006), 403.
doi: 10.1007/s00526-005-0349-2. |
show all references
References:
[1] |
J. P. Borgna and D. F. Rial, Existence of ground states for a one dimensional relativistic Schrodinger equations,, \emph{J. Math. Phys.}, 53 (2012).
doi: 10.1063/1.4726198. |
[2] |
T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).
|
[3] |
Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, \emph{Funkcialaj Ekvacioj}, 56 (2013), 193. Google Scholar |
[4] |
Y. Cho, G. Hwang and T. Ozawa, Global well-posedness of critical nonlinear Schrödinger equations below $L^2$,, \emph{DCDS-A}, 33 (2013), 1389.
doi: 10.3934/dcds.2013.33.1389. |
[5] |
Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, to appear in \emph{Indina Univ. Math. J.}, (). Google Scholar |
[6] |
Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, \emph{Contem. Math.}, 11 (2009), 355.
doi: 10.1142/S0219199709003399. |
[7] |
Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates,, \emph{Commun. Pure Appl. Anal.}, 10 (2011), 1121.
doi: 10.3934/cpaa.2011.10.1121. |
[8] |
Daoyuan Fang and Chengbo Wang, Weighted strichartz estimates with angular regularity and their applications,, \emph{Forum Mathematicum}, 23 (2011), 181.
doi: 10.1515/FORM.2011.009. |
[9] |
P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, \emph{P. Roy. Soc. Edinburgh A}, 142 (2012), 1237.
doi: 10.1017/S0308210511000746. |
[10] |
B. Guo and D. Huang, Existence and stability of standing waves for nonlinear fractional Schr\"odinger equations,, \emph{J. Math. Phys.}, 53 (2012).
doi: 10.1063/1.4746806. |
[11] |
H. Hajaiej, Existence of minimizers of functionals involving the fractional gradient in the absence of compactness, symmetry and monotonicity,, \emph{J. Math. Anal. Appl.}, 399 (2013), 17.
doi: 10.1016/j.jmaa.2012.09.023. |
[12] |
H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gargliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations,, \emph{RIMS Kokyuroku Bessatsu}, B26 (2011), 159.
|
[13] |
A. D. Ionescu and F. Pusateri, Nolinear fractional Schrödinger equations in one dimension,, \emph{To appear in J. Funct. Anal.}, ().
doi: 10.1016/j.jfa.2013.08.027. |
[14] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, II,, \emph{Ann. Inst. H. Poincare' Anal. Non Line'aire}, 1 (1984), 109.
|
[15] |
T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations,, \emph{Cal. Var. PDE.}, 25 (2006), 403.
doi: 10.1007/s00526-005-0349-2. |
[1] |
Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066 |
[2] |
Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050 |
[3] |
Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905 |
[4] |
Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431 |
[5] |
Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210 |
[6] |
Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233 |
[7] |
Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109 |
[8] |
Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 |
[9] |
Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323 |
[10] |
Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188 |
[11] |
Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475 |
[12] |
Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177 |
[13] |
Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 |
[14] |
Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094 |
[15] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[16] |
Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 |
[17] |
Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613 |
[18] |
Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102 |
[19] |
Marilena N. Poulou, Nikolaos M. Stavrakakis. Finite dimensionality of a Klein-Gordon-Schrödinger type system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 149-161. doi: 10.3934/dcdss.2009.2.149 |
[20] |
Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]