-
Previous Article
Sobolev norm estimates for a class of bilinear multipliers
- CPAA Home
- This Issue
-
Next Article
On the orbital stability of fractional Schrödinger equations
On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity
1. | Department of mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China |
2. | Department of Mathematics, University of Texas-Pan American, Edinburg, Texas 78541, United States |
3. | Department of Mathematics, Zhongshan University, 510275 Guangzhou, China |
References:
[1] |
H. Bahouri, Y. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Pratial Differential Equations, Springer-Verlag, Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7. |
[2] |
P. M. Bies, P. Górka and E. Reyes, The dual modified Korteweg-de Vries-Fokas-Qiao equation: Geometry and local analysis, J. Math. Phys., 53 (2012), 073710.
doi: 10.1063/1.4736845. |
[3] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[4] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. |
[5] |
A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier(Grenoble), 50 (2000), 321-362. |
[6] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[7] |
A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[8] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[9] |
A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.
doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. |
[10] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[11] |
A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. |
[12] |
A. Constantin and W. Strauss, Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (2000), 140-148.
doi: 10.1016/S0375-9601(00)00255-3. |
[13] |
A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422.
doi: 10.1007/s00332-002-0517-x. |
[14] |
R. Danchin, A few remarks on the Camassa-Holm equation, Diff. Int. Eq., 14 (2001), 953-988. |
[15] |
A. Fokas, The Korteweg-de Vries equation and beyond, Acta Appl. Math., 39 (1995), 295-305.
doi: 10.1007/BF00994638. |
[16] |
A. Fokas, On a class of physically important integrable equations, Physica D, 87 (1995), 145-150.
doi: 10.1016/0167-2789(95)00133-O. |
[17] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[18] |
Y. Fu, G. Gui, C. Qu and Y. Liu, On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity, J. Differential Equations, 255 (2013), 1905-1938.
doi: 10.1016/j.jde.2013.05.024. |
[19] |
B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Physica D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6. |
[20] |
G. Gui, Y. Liu, P. J. Olver and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.
doi: 10.1007/s00220-012-1566-0. |
[21] |
A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation, Diff. Int. Eq., 14 (2001), 821-831. |
[22] |
R. Ivanov and T. Lyons, Dark solitons of the Qiao's hierarchy, J. Math. Phys., 53 (2012), 123701. |
[23] |
J. B. Li and Y. Zhang, Exact M/W-shape solitary wave solutions determined by a singular traveling wave equation, Nonlinear Anal. Real World Appl., 10 (2009), 1797-1802.
doi: 10.1016/j.nonrwa.2008.02.016. |
[24] |
Y. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[25] |
X. Liu and Z. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation, Nonlinear Anal. TMA, 74 (2011), 2497-2507.
doi: 10.1016/j.na.2010.12.005. |
[26] |
P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[27] |
Z. Qiao, A new integrable equation with cuspon and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701.
doi: 10.1063/1.2365758. |
[28] |
Z. Qiao and X. Li, An integrable equation with nonsmooth solitons, Theor. Math. Phys., 267 (2011), 584-589. |
[29] |
Z. Qiao, B. Xia and J. B. Li, Integrable system with peakon, weak kink, and kink-peakon interactional solutions,, preprint, ().
|
[30] |
C. Qu, X. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys., 322 (2013), 967-997.
doi: 10.1007/s00220-013-1749-3. |
[31] |
G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. TMA, 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X. |
[32] |
S. Sakovich, Smooth soliton solutions of a new integrable equation by Qiao, J. Math. Phys., 52 (2011), 023509.
doi: 10.1063/1.3548837. |
[33] |
J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48. |
[34] |
Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois. J. Math., 47 (2003), 649-666. |
show all references
References:
[1] |
H. Bahouri, Y. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Pratial Differential Equations, Springer-Verlag, Berlin Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7. |
[2] |
P. M. Bies, P. Górka and E. Reyes, The dual modified Korteweg-de Vries-Fokas-Qiao equation: Geometry and local analysis, J. Math. Phys., 53 (2012), 073710.
doi: 10.1063/1.4736845. |
[3] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[4] |
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31 (1994), 1-33. |
[5] |
A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier(Grenoble), 50 (2000), 321-362. |
[6] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[7] |
A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.
doi: 10.1093/imamat/hxs033. |
[8] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[9] |
A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.
doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. |
[10] |
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.
doi: 10.1090/S0273-0979-07-01159-7. |
[11] |
A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C. |
[12] |
A. Constantin and W. Strauss, Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (2000), 140-148.
doi: 10.1016/S0375-9601(00)00255-3. |
[13] |
A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear. Sci., 12 (2002), 415-422.
doi: 10.1007/s00332-002-0517-x. |
[14] |
R. Danchin, A few remarks on the Camassa-Holm equation, Diff. Int. Eq., 14 (2001), 953-988. |
[15] |
A. Fokas, The Korteweg-de Vries equation and beyond, Acta Appl. Math., 39 (1995), 295-305.
doi: 10.1007/BF00994638. |
[16] |
A. Fokas, On a class of physically important integrable equations, Physica D, 87 (1995), 145-150.
doi: 10.1016/0167-2789(95)00133-O. |
[17] |
A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.
doi: 10.1016/0167-2789(81)90004-X. |
[18] |
Y. Fu, G. Gui, C. Qu and Y. Liu, On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity, J. Differential Equations, 255 (2013), 1905-1938.
doi: 10.1016/j.jde.2013.05.024. |
[19] |
B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Physica D, 95 (1996), 229-243.
doi: 10.1016/0167-2789(96)00048-6. |
[20] |
G. Gui, Y. Liu, P. J. Olver and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.
doi: 10.1007/s00220-012-1566-0. |
[21] |
A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation, Diff. Int. Eq., 14 (2001), 821-831. |
[22] |
R. Ivanov and T. Lyons, Dark solitons of the Qiao's hierarchy, J. Math. Phys., 53 (2012), 123701. |
[23] |
J. B. Li and Y. Zhang, Exact M/W-shape solitary wave solutions determined by a singular traveling wave equation, Nonlinear Anal. Real World Appl., 10 (2009), 1797-1802.
doi: 10.1016/j.nonrwa.2008.02.016. |
[24] |
Y. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.
doi: 10.1006/jdeq.1999.3683. |
[25] |
X. Liu and Z. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation, Nonlinear Anal. TMA, 74 (2011), 2497-2507.
doi: 10.1016/j.na.2010.12.005. |
[26] |
P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[27] |
Z. Qiao, A new integrable equation with cuspon and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701.
doi: 10.1063/1.2365758. |
[28] |
Z. Qiao and X. Li, An integrable equation with nonsmooth solitons, Theor. Math. Phys., 267 (2011), 584-589. |
[29] |
Z. Qiao, B. Xia and J. B. Li, Integrable system with peakon, weak kink, and kink-peakon interactional solutions,, preprint, ().
|
[30] |
C. Qu, X. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys., 322 (2013), 967-997.
doi: 10.1007/s00220-013-1749-3. |
[31] |
G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal. TMA, 46 (2001), 309-327.
doi: 10.1016/S0362-546X(01)00791-X. |
[32] |
S. Sakovich, Smooth soliton solutions of a new integrable equation by Qiao, J. Math. Phys., 52 (2011), 023509.
doi: 10.1063/1.3548837. |
[33] |
J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48. |
[34] |
Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois. J. Math., 47 (2003), 649-666. |
[1] |
Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781 |
[2] |
Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501 |
[3] |
Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042 |
[4] |
Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493 |
[5] |
Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019 |
[6] |
Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025 |
[7] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171 |
[8] |
Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139 |
[9] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[10] |
Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166 |
[11] |
Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027 |
[12] |
Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699 |
[13] |
Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 |
[14] |
Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115 |
[15] |
Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843 |
[16] |
Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809 |
[17] |
Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203 |
[18] |
Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029 |
[19] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[20] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]