May  2014, 13(3): 1283-1304. doi: 10.3934/cpaa.2014.13.1283

On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity

1. 

Department of mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. 

Department of Mathematics, University of Texas-Pan American, Edinburg, Texas 78541, United States

3. 

Department of Mathematics, Zhongshan University, 510275 Guangzhou, China

Received  June 2013 Revised  October 2013 Published  December 2013

In this paper, we study the Cauchy problem for a generalized integrable Camassa-Holm equation with both quadratic and cubic nonlinearity. By overcoming the difficulties caused by the complicated mixed nonlinear structure, we firstly establish the local well-posedness result in Besov spaces, and then present a precise blow-up scenario for strong solutions. Furthermore, we show the existence of single peakon by the method of analysis.
Citation: Xingxing Liu, Zhijun Qiao, Zhaoyang Yin. On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1283-1304. doi: 10.3934/cpaa.2014.13.1283
References:
[1]

H. Bahouri, Y. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Pratial Differential Equations,, Springer-Verlag, (2011). doi: 10.1007/978-3-642-16830-7.

[2]

P. M. Bies, P. Górka and E. Reyes, The dual modified Korteweg-de Vries-Fokas-Qiao equation: Geometry and local analysis,, \emph{J. Math. Phys.}, 53 (2012). doi: 10.1063/1.4736845.

[3]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, \emph{Phys. Lett.}, 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[4]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, \emph{Adv. Appl. Mech.}, 31 (1994), 1.

[5]

A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: a geometric approach,, \emph{Ann. Inst. Fourier(Grenoble)}, 50 (2000), 321.

[6]

A. Constantin, The trajectories of particles in Stokes waves,, \emph{Invent. Math.}, 166 (2006), 523. doi: 10.1007/s00222-006-0002-5.

[7]

A. Constantin, Particle trajectories in extreme Stokes waves,, \emph{IMA J. Appl. Math.}, 77 (2012), 293. doi: 10.1093/imamat/hxs033.

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, \emph{Acta Math.}, 181 (1998), 229. doi: 10.1007/BF02392586.

[9]

A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 475. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

[10]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, \emph{Bull. Amer. Math. Soc.}, 44 (2007), 423. doi: 10.1090/S0273-0979-07-01159-7.

[11]

A. Constantin and W. Strauss, Stability of peakons,, \emph{Comm. Pure Appl. Math.}, 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.

[12]

A. Constantin and W. Strauss, Stability of a class of solitary waves in compressible elastic rods,, \emph{Phys. Lett. A}, 270 (2000), 140. doi: 10.1016/S0375-9601(00)00255-3.

[13]

A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons,, \emph{J. Nonlinear. Sci.}, 12 (2002), 415. doi: 10.1007/s00332-002-0517-x.

[14]

R. Danchin, A few remarks on the Camassa-Holm equation,, \emph{Diff. Int. Eq.}, 14 (2001), 953.

[15]

A. Fokas, The Korteweg-de Vries equation and beyond,, \emph{Acta Appl. Math.}, 39 (1995), 295. doi: 10.1007/BF00994638.

[16]

A. Fokas, On a class of physically important integrable equations,, \emph{Physica D}, 87 (1995), 145. doi: 10.1016/0167-2789(95)00133-O.

[17]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, \emph{Physica D}, 4 (1981), 47. doi: 10.1016/0167-2789(81)90004-X.

[18]

Y. Fu, G. Gui, C. Qu and Y. Liu, On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity,, \emph{J. Differential Equations}, 255 (2013), 1905. doi: 10.1016/j.jde.2013.05.024.

[19]

B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation,, \emph{Physica D}, 95 (1996), 229. doi: 10.1016/0167-2789(96)00048-6.

[20]

G. Gui, Y. Liu, P. J. Olver and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation,, \emph{Comm. Math. Phys.}, 319 (2013), 731. doi: 10.1007/s00220-012-1566-0.

[21]

A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation,, \emph{Diff. Int. Eq.}, 14 (2001), 821.

[22]

R. Ivanov and T. Lyons, Dark solitons of the Qiao's hierarchy,, \emph{J. Math. Phys.}, 53 (2012).

[23]

J. B. Li and Y. Zhang, Exact M/W-shape solitary wave solutions determined by a singular traveling wave equation,, \emph{Nonlinear Anal. Real World Appl.}, 10 (2009), 1797. doi: 10.1016/j.nonrwa.2008.02.016.

[24]

Y. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation,, \emph{J. Differential Equations}, 162 (2000), 27. doi: 10.1006/jdeq.1999.3683.

[25]

X. Liu and Z. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation,, \emph{Nonlinear Anal. TMA}, 74 (2011), 2497. doi: 10.1016/j.na.2010.12.005.

[26]

P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,, \emph{Phys. Rev. E}, 53 (1996), 1900. doi: 10.1103/PhysRevE.53.1900.

[27]

Z. Qiao, A new integrable equation with cuspon and W/M-shape-peaks solitons,, \emph{J. Math. Phys.}, 47 (2006). doi: 10.1063/1.2365758.

[28]

Z. Qiao and X. Li, An integrable equation with nonsmooth solitons,, \emph{Theor. Math. Phys.}, 267 (2011), 584.

[29]

Z. Qiao, B. Xia and J. B. Li, Integrable system with peakon, weak kink, and kink-peakon interactional solutions,, preprint, ().

[30]

C. Qu, X. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity,, \emph{Comm. Math. Phys.}, 322 (2013), 967. doi: 10.1007/s00220-013-1749-3.

[31]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, \emph{Nonlinear Anal. TMA}, 46 (2001), 309. doi: 10.1016/S0362-546X(01)00791-X.

[32]

S. Sakovich, Smooth soliton solutions of a new integrable equation by Qiao,, \emph{J. Math. Phys.}, 52 (2011). doi: 10.1063/1.3548837.

[33]

J. F. Toland, Stokes waves,, \emph{Topol. Methods Nonlinear Anal.}, 7 (1996), 1.

[34]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions,, \emph{Illinois. J. Math.}, 47 (2003), 649.

show all references

References:
[1]

H. Bahouri, Y. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Pratial Differential Equations,, Springer-Verlag, (2011). doi: 10.1007/978-3-642-16830-7.

[2]

P. M. Bies, P. Górka and E. Reyes, The dual modified Korteweg-de Vries-Fokas-Qiao equation: Geometry and local analysis,, \emph{J. Math. Phys.}, 53 (2012). doi: 10.1063/1.4736845.

[3]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, \emph{Phys. Lett.}, 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[4]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, \emph{Adv. Appl. Mech.}, 31 (1994), 1.

[5]

A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: a geometric approach,, \emph{Ann. Inst. Fourier(Grenoble)}, 50 (2000), 321.

[6]

A. Constantin, The trajectories of particles in Stokes waves,, \emph{Invent. Math.}, 166 (2006), 523. doi: 10.1007/s00222-006-0002-5.

[7]

A. Constantin, Particle trajectories in extreme Stokes waves,, \emph{IMA J. Appl. Math.}, 77 (2012), 293. doi: 10.1093/imamat/hxs033.

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, \emph{Acta Math.}, 181 (1998), 229. doi: 10.1007/BF02392586.

[9]

A. Constantin and J. Escher, Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation,, \emph{Comm. Pure Appl. Math.}, 51 (1998), 475. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

[10]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, \emph{Bull. Amer. Math. Soc.}, 44 (2007), 423. doi: 10.1090/S0273-0979-07-01159-7.

[11]

A. Constantin and W. Strauss, Stability of peakons,, \emph{Comm. Pure Appl. Math.}, 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.3.CO;2-C.

[12]

A. Constantin and W. Strauss, Stability of a class of solitary waves in compressible elastic rods,, \emph{Phys. Lett. A}, 270 (2000), 140. doi: 10.1016/S0375-9601(00)00255-3.

[13]

A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons,, \emph{J. Nonlinear. Sci.}, 12 (2002), 415. doi: 10.1007/s00332-002-0517-x.

[14]

R. Danchin, A few remarks on the Camassa-Holm equation,, \emph{Diff. Int. Eq.}, 14 (2001), 953.

[15]

A. Fokas, The Korteweg-de Vries equation and beyond,, \emph{Acta Appl. Math.}, 39 (1995), 295. doi: 10.1007/BF00994638.

[16]

A. Fokas, On a class of physically important integrable equations,, \emph{Physica D}, 87 (1995), 145. doi: 10.1016/0167-2789(95)00133-O.

[17]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, \emph{Physica D}, 4 (1981), 47. doi: 10.1016/0167-2789(81)90004-X.

[18]

Y. Fu, G. Gui, C. Qu and Y. Liu, On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity,, \emph{J. Differential Equations}, 255 (2013), 1905. doi: 10.1016/j.jde.2013.05.024.

[19]

B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation,, \emph{Physica D}, 95 (1996), 229. doi: 10.1016/0167-2789(96)00048-6.

[20]

G. Gui, Y. Liu, P. J. Olver and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation,, \emph{Comm. Math. Phys.}, 319 (2013), 731. doi: 10.1007/s00220-012-1566-0.

[21]

A. Himonas and G. Misiolek, The Cauchy problem for an integrable shallow water equation,, \emph{Diff. Int. Eq.}, 14 (2001), 821.

[22]

R. Ivanov and T. Lyons, Dark solitons of the Qiao's hierarchy,, \emph{J. Math. Phys.}, 53 (2012).

[23]

J. B. Li and Y. Zhang, Exact M/W-shape solitary wave solutions determined by a singular traveling wave equation,, \emph{Nonlinear Anal. Real World Appl.}, 10 (2009), 1797. doi: 10.1016/j.nonrwa.2008.02.016.

[24]

Y. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation,, \emph{J. Differential Equations}, 162 (2000), 27. doi: 10.1006/jdeq.1999.3683.

[25]

X. Liu and Z. Yin, Local well-posedness and stability of peakons for a generalized Dullin-Gottwald-Holm equation,, \emph{Nonlinear Anal. TMA}, 74 (2011), 2497. doi: 10.1016/j.na.2010.12.005.

[26]

P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support,, \emph{Phys. Rev. E}, 53 (1996), 1900. doi: 10.1103/PhysRevE.53.1900.

[27]

Z. Qiao, A new integrable equation with cuspon and W/M-shape-peaks solitons,, \emph{J. Math. Phys.}, 47 (2006). doi: 10.1063/1.2365758.

[28]

Z. Qiao and X. Li, An integrable equation with nonsmooth solitons,, \emph{Theor. Math. Phys.}, 267 (2011), 584.

[29]

Z. Qiao, B. Xia and J. B. Li, Integrable system with peakon, weak kink, and kink-peakon interactional solutions,, preprint, ().

[30]

C. Qu, X. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity,, \emph{Comm. Math. Phys.}, 322 (2013), 967. doi: 10.1007/s00220-013-1749-3.

[31]

G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation,, \emph{Nonlinear Anal. TMA}, 46 (2001), 309. doi: 10.1016/S0362-546X(01)00791-X.

[32]

S. Sakovich, Smooth soliton solutions of a new integrable equation by Qiao,, \emph{J. Math. Phys.}, 52 (2011). doi: 10.1063/1.3548837.

[33]

J. F. Toland, Stokes waves,, \emph{Topol. Methods Nonlinear Anal.}, 7 (1996), 1.

[34]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions,, \emph{Illinois. J. Math.}, 47 (2003), 649.

[1]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[2]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[3]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[4]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[5]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[6]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[7]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[8]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[9]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[10]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[11]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[12]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[13]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[14]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[15]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[16]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[17]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[18]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[19]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[20]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]