• Previous Article
    Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime
  • CPAA Home
  • This Issue
  • Next Article
    On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity
May  2014, 13(3): 1305-1315. doi: 10.3934/cpaa.2014.13.1305

Sobolev norm estimates for a class of bilinear multipliers

1. 

Laboratoire Paul Painlevé - CNRS, Université Lille 1, 59655 Villeneuve d’Ascq Cedex

2. 

University of Zagreb, Department of Mathematics, Bijenička cesta 30, 10000 Zagreb, Croatia

Received  July 2013 Revised  September 2013 Published  December 2013

We consider bilinear multipliers that appeared as a distinguished particular case in the classification of two-dimensional bilinear Hilbert transforms by Demeter and Thiele [9]. In this note we investigate their boundedness on Sobolev spaces. Furthermore, we study structurally similar operators with symbols that also depend on the spatial variables. The new results build on the existing $\mathrm{L}^p$ estimates for a paraproduct-like operator previously studied by the authors in [5] and [10]. Our primary intention is to emphasize the analogies with Coifman-Meyer multipliers and with bilinear pseudodifferential operators of order $0$.
Citation: Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305
References:
[1]

Á. Bényi, A. R. Nahmod and R. H. Torres, Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators, J. Geom. Anal., 16 (2006), 431-453. doi: 10.1007/BF02922061.

[2]

Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, Comm. Partial Differential Equations, 28 (2003), 1161-1181. doi: 10.1081/PDE-120021190.

[3]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, 223.

[4]

F. Bernicot, A bilinear pseudodifferential calculus, J. Geom. Anal., 20 (2010), 39-62. doi: 10.1007/s12220-009-9105-8.

[5]

F. Bernicot, Fiber-wise Calderón-Zygmund decomposition and application to a bi-dimensional paraproduct, Illinois J. Math., 56 (2012), 415-422.

[6]

R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Soc. Math. Fr., Paris, 1978. Astérisque, 57.

[7]

R. Coifman and Y. Meyer, Commutateurs d'intégrales singuliéres et opèrateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28 (1978), 177-202.

[8]

R. Coifman and Y. Meyer, Ondelettes et opérateurs. III. Opérateurs multilinéaires, Hermann, Paris, 1991.

[9]

C. Demeter and C. Thiele, On the two-dimensional bilinear Hilbert transform, Amer. J. Math., 132 (2010), 201-256. doi: 10.1353/ajm.0.0101.

[10]

V. Kovač, Boundedness of the twisted paraproduct, Rev. Mat. Iberoam., 28 (2012), 1143-1164. doi: 10.4171/RMI/707.

[11]

M. Lacey and C. Thiele, $L^p$ estimates on the bilinear Hilbert transform for $2Ann. of Math., 146 (1997), 693-724. doi: 10.2307/2952458.

[12]

M. Lacey and C. Thiele, On Calderón's conjecture, Ann. of Math., 149 (1999), 475-496. doi: 10.2307/120971.

[13]

C. Muscalu, T. Tao and C. Thiele, Multi-linear operators given by singular multipliers, J. Amer. Math. Soc., 15 (2002), 469-496. doi: 10.1090/S0894-0347-01-00379-4.

show all references

References:
[1]

Á. Bényi, A. R. Nahmod and R. H. Torres, Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators, J. Geom. Anal., 16 (2006), 431-453. doi: 10.1007/BF02922061.

[2]

Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, Comm. Partial Differential Equations, 28 (2003), 1161-1181. doi: 10.1081/PDE-120021190.

[3]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, 223.

[4]

F. Bernicot, A bilinear pseudodifferential calculus, J. Geom. Anal., 20 (2010), 39-62. doi: 10.1007/s12220-009-9105-8.

[5]

F. Bernicot, Fiber-wise Calderón-Zygmund decomposition and application to a bi-dimensional paraproduct, Illinois J. Math., 56 (2012), 415-422.

[6]

R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels, Soc. Math. Fr., Paris, 1978. Astérisque, 57.

[7]

R. Coifman and Y. Meyer, Commutateurs d'intégrales singuliéres et opèrateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28 (1978), 177-202.

[8]

R. Coifman and Y. Meyer, Ondelettes et opérateurs. III. Opérateurs multilinéaires, Hermann, Paris, 1991.

[9]

C. Demeter and C. Thiele, On the two-dimensional bilinear Hilbert transform, Amer. J. Math., 132 (2010), 201-256. doi: 10.1353/ajm.0.0101.

[10]

V. Kovač, Boundedness of the twisted paraproduct, Rev. Mat. Iberoam., 28 (2012), 1143-1164. doi: 10.4171/RMI/707.

[11]

M. Lacey and C. Thiele, $L^p$ estimates on the bilinear Hilbert transform for $2Ann. of Math., 146 (1997), 693-724. doi: 10.2307/2952458.

[12]

M. Lacey and C. Thiele, On Calderón's conjecture, Ann. of Math., 149 (1999), 475-496. doi: 10.2307/120971.

[13]

C. Muscalu, T. Tao and C. Thiele, Multi-linear operators given by singular multipliers, J. Amer. Math. Soc., 15 (2002), 469-496. doi: 10.1090/S0894-0347-01-00379-4.

[1]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[2]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[3]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[4]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[5]

El Hassan Zerrik, Nihale El Boukhari. Optimal bounded controls problem for bilinear systems. Evolution Equations and Control Theory, 2015, 4 (2) : 221-232. doi: 10.3934/eect.2015.4.221

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434

[7]

John B. Baena, Daniel Cabarcas, Javier Verbel. On the complexity of solving generic overdetermined bilinear systems. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021047

[8]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[9]

Nigel Higson and Gennadi Kasparov. Operator K-theory for groups which act properly and isometrically on Hilbert space. Electronic Research Announcements, 1997, 3: 131-142.

[10]

Josep M. Olm, Xavier Ros-Oton. Approximate tracking of periodic references in a class of bilinear systems via stable inversion. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 197-215. doi: 10.3934/dcdsb.2011.15.197

[11]

Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial and Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71

[12]

Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399

[13]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure and Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[14]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems and Imaging, 2021, 15 (2) : 339-366. doi: 10.3934/ipi.2020071

[15]

E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53

[16]

Tobias Breiten, Karl Kunisch, Laurent Pfeiffer. Numerical study of polynomial feedback laws for a bilinear control problem. Mathematical Control and Related Fields, 2018, 8 (3&4) : 557-582. doi: 10.3934/mcrf.2018023

[17]

Dan-Andrei Geba, Evan Witz. Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations. Electronic Research Archive, 2020, 28 (2) : 627-649. doi: 10.3934/era.2020033

[18]

Andrii Mironchenko, Hiroshi Ito. Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Mathematical Control and Related Fields, 2016, 6 (3) : 447-466. doi: 10.3934/mcrf.2016011

[19]

Piermarco Cannarsa, Alessandro Duca, Cristina Urbani. Exact controllability to eigensolutions of the bilinear heat equation on compact networks. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1377-1401. doi: 10.3934/dcdss.2022011

[20]

Karine Beauchard, Morgan Morancey. Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Mathematical Control and Related Fields, 2014, 4 (2) : 125-160. doi: 10.3934/mcrf.2014.4.125

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (204)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]