• Previous Article
    On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity
  • CPAA Home
  • This Issue
  • Next Article
    Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime
May  2014, 13(3): 1305-1315. doi: 10.3934/cpaa.2014.13.1305

Sobolev norm estimates for a class of bilinear multipliers

1. 

Laboratoire Paul Painlevé - CNRS, Université Lille 1, 59655 Villeneuve d’Ascq Cedex

2. 

University of Zagreb, Department of Mathematics, Bijenička cesta 30, 10000 Zagreb, Croatia

Received  July 2013 Revised  September 2013 Published  December 2013

We consider bilinear multipliers that appeared as a distinguished particular case in the classification of two-dimensional bilinear Hilbert transforms by Demeter and Thiele [9]. In this note we investigate their boundedness on Sobolev spaces. Furthermore, we study structurally similar operators with symbols that also depend on the spatial variables. The new results build on the existing $\mathrm{L}^p$ estimates for a paraproduct-like operator previously studied by the authors in [5] and [10]. Our primary intention is to emphasize the analogies with Coifman-Meyer multipliers and with bilinear pseudodifferential operators of order $0$.
Citation: Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305
References:
[1]

Á. Bényi, A. R. Nahmod and R. H. Torres, Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators,, \emph{J. Geom. Anal.}, 16 (2006), 431. doi: 10.1007/BF02922061. Google Scholar

[2]

Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators,, \emph{Comm. Partial Differential Equations}, 28 (2003), 1161. doi: 10.1081/PDE-120021190. Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction,, Springer-Verlag, 223 (1976). Google Scholar

[4]

F. Bernicot, A bilinear pseudodifferential calculus,, \emph{J. Geom. Anal.}, 20 (2010), 39. doi: 10.1007/s12220-009-9105-8. Google Scholar

[5]

F. Bernicot, Fiber-wise Calderón-Zygmund decomposition and application to a bi-dimensional paraproduct,, \emph{Illinois J. Math.}, 56 (2012), 415. Google Scholar

[6]

R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels,, Soc. Math. Fr., 57 (1978). Google Scholar

[7]

R. Coifman and Y. Meyer, Commutateurs d'intégrales singuliéres et opèrateurs multilinéaires,, \emph{Ann. Inst. Fourier} (Grenoble), 28 (1978), 177. Google Scholar

[8]

R. Coifman and Y. Meyer, Ondelettes et opérateurs. III. Opérateurs multilinéaires,, Hermann, (1991). Google Scholar

[9]

C. Demeter and C. Thiele, On the two-dimensional bilinear Hilbert transform,, \emph{Amer. J. Math.}, 132 (2010), 201. doi: 10.1353/ajm.0.0101. Google Scholar

[10]

V. Kovač, Boundedness of the twisted paraproduct,, \emph{Rev. Mat. Iberoam.}, 28 (2012), 1143. doi: 10.4171/RMI/707. Google Scholar

[11]

M. Lacey and C. Thiele, $L^p$ estimates on the bilinear Hilbert transform for $2\emph{Ann. of Math.}, 146 (1997), 693. doi: 10.2307/2952458. Google Scholar

[12]

M. Lacey and C. Thiele, On Calderón's conjecture,, \emph{Ann. of Math.}, 149 (1999), 475. doi: 10.2307/120971. Google Scholar

[13]

C. Muscalu, T. Tao and C. Thiele, Multi-linear operators given by singular multipliers,, \emph{J. Amer. Math. Soc.}, 15 (2002), 469. doi: 10.1090/S0894-0347-01-00379-4. Google Scholar

show all references

References:
[1]

Á. Bényi, A. R. Nahmod and R. H. Torres, Sobolev space estimates and symbolic calculus for bilinear pseudodifferential operators,, \emph{J. Geom. Anal.}, 16 (2006), 431. doi: 10.1007/BF02922061. Google Scholar

[2]

Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators,, \emph{Comm. Partial Differential Equations}, 28 (2003), 1161. doi: 10.1081/PDE-120021190. Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction,, Springer-Verlag, 223 (1976). Google Scholar

[4]

F. Bernicot, A bilinear pseudodifferential calculus,, \emph{J. Geom. Anal.}, 20 (2010), 39. doi: 10.1007/s12220-009-9105-8. Google Scholar

[5]

F. Bernicot, Fiber-wise Calderón-Zygmund decomposition and application to a bi-dimensional paraproduct,, \emph{Illinois J. Math.}, 56 (2012), 415. Google Scholar

[6]

R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-différentiels,, Soc. Math. Fr., 57 (1978). Google Scholar

[7]

R. Coifman and Y. Meyer, Commutateurs d'intégrales singuliéres et opèrateurs multilinéaires,, \emph{Ann. Inst. Fourier} (Grenoble), 28 (1978), 177. Google Scholar

[8]

R. Coifman and Y. Meyer, Ondelettes et opérateurs. III. Opérateurs multilinéaires,, Hermann, (1991). Google Scholar

[9]

C. Demeter and C. Thiele, On the two-dimensional bilinear Hilbert transform,, \emph{Amer. J. Math.}, 132 (2010), 201. doi: 10.1353/ajm.0.0101. Google Scholar

[10]

V. Kovač, Boundedness of the twisted paraproduct,, \emph{Rev. Mat. Iberoam.}, 28 (2012), 1143. doi: 10.4171/RMI/707. Google Scholar

[11]

M. Lacey and C. Thiele, $L^p$ estimates on the bilinear Hilbert transform for $2\emph{Ann. of Math.}, 146 (1997), 693. doi: 10.2307/2952458. Google Scholar

[12]

M. Lacey and C. Thiele, On Calderón's conjecture,, \emph{Ann. of Math.}, 149 (1999), 475. doi: 10.2307/120971. Google Scholar

[13]

C. Muscalu, T. Tao and C. Thiele, Multi-linear operators given by singular multipliers,, \emph{J. Amer. Math. Soc.}, 15 (2002), 469. doi: 10.1090/S0894-0347-01-00379-4. Google Scholar

[1]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[2]

El Hassan Zerrik, Nihale El Boukhari. Optimal bounded controls problem for bilinear systems. Evolution Equations & Control Theory, 2015, 4 (2) : 221-232. doi: 10.3934/eect.2015.4.221

[3]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[4]

Josep M. Olm, Xavier Ros-Oton. Approximate tracking of periodic references in a class of bilinear systems via stable inversion. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 197-215. doi: 10.3934/dcdsb.2011.15.197

[5]

Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial & Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71

[6]

Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399

[7]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[8]

E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53

[9]

Andrii Mironchenko, Hiroshi Ito. Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Mathematical Control & Related Fields, 2016, 6 (3) : 447-466. doi: 10.3934/mcrf.2016011

[10]

Tobias Breiten, Karl Kunisch, Laurent Pfeiffer. Numerical study of polynomial feedback laws for a bilinear control problem. Mathematical Control & Related Fields, 2018, 8 (3&4) : 557-582. doi: 10.3934/mcrf.2018023

[11]

Nigel Higson and Gennadi Kasparov. Operator K-theory for groups which act properly and isometrically on Hilbert space. Electronic Research Announcements, 1997, 3: 131-142.

[12]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[13]

Karine Beauchard, Morgan Morancey. Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Mathematical Control & Related Fields, 2014, 4 (2) : 125-160. doi: 10.3934/mcrf.2014.4.125

[14]

Heinz Schättler, Urszula Ledzewicz. Fields of extremals and sensitivity analysis for multi-input bilinear optimal control problems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4611-4638. doi: 10.3934/dcds.2015.35.4611

[15]

Daniel Alpay, Mihai Putinar, Victor Vinnikov. A Hilbert space approach to bounded analytic extension in the ball. Communications on Pure & Applied Analysis, 2003, 2 (2) : 139-145. doi: 10.3934/cpaa.2003.2.139

[16]

Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541

[17]

Onur Alp İlhan. Solvability of some partial integral equations in Hilbert space. Communications on Pure & Applied Analysis, 2008, 7 (4) : 837-844. doi: 10.3934/cpaa.2008.7.837

[18]

Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233

[19]

P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233

[20]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]