• Previous Article
    Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime
  • CPAA Home
  • This Issue
  • Next Article
    On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity
May  2014, 13(3): 1305-1315. doi: 10.3934/cpaa.2014.13.1305

Sobolev norm estimates for a class of bilinear multipliers

1. 

Laboratoire Paul Painlevé - CNRS, Université Lille 1, 59655 Villeneuve d’Ascq Cedex

2. 

University of Zagreb, Department of Mathematics, Bijenička cesta 30, 10000 Zagreb, Croatia

Received  July 2013 Revised  September 2013 Published  December 2013

We consider bilinear multipliers that appeared as a distinguished particular case in the classification of two-dimensional bilinear Hilbert transforms by Demeter and Thiele [9]. In this note we investigate their boundedness on Sobolev spaces. Furthermore, we study structurally similar operators with symbols that also depend on the spatial variables. The new results build on the existing $\mathrm{L}^p$ estimates for a paraproduct-like operator previously studied by the authors in [5] and [10]. Our primary intention is to emphasize the analogies with Coifman-Meyer multipliers and with bilinear pseudodifferential operators of order $0$.
Citation: Frédéric Bernicot, Vjekoslav Kovač. Sobolev norm estimates for a class of bilinear multipliers. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1305-1315. doi: 10.3934/cpaa.2014.13.1305
References:
[1]

J. Geom. Anal., 16 (2006), 431-453. doi: 10.1007/BF02922061.  Google Scholar

[2]

Comm. Partial Differential Equations, 28 (2003), 1161-1181. doi: 10.1081/PDE-120021190.  Google Scholar

[3]

Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, 223.  Google Scholar

[4]

J. Geom. Anal., 20 (2010), 39-62. doi: 10.1007/s12220-009-9105-8.  Google Scholar

[5]

Illinois J. Math., 56 (2012), 415-422. Google Scholar

[6]

Soc. Math. Fr., Paris, 1978. Astérisque, 57.  Google Scholar

[7]

Ann. Inst. Fourier (Grenoble), 28 (1978), 177-202.  Google Scholar

[8]

Hermann, Paris, 1991.  Google Scholar

[9]

Amer. J. Math., 132 (2010), 201-256. doi: 10.1353/ajm.0.0101.  Google Scholar

[10]

Rev. Mat. Iberoam., 28 (2012), 1143-1164. doi: 10.4171/RMI/707.  Google Scholar

[11]

Ann. of Math., 146 (1997), 693-724. doi: 10.2307/2952458.  Google Scholar

[12]

Ann. of Math., 149 (1999), 475-496. doi: 10.2307/120971.  Google Scholar

[13]

J. Amer. Math. Soc., 15 (2002), 469-496. doi: 10.1090/S0894-0347-01-00379-4.  Google Scholar

show all references

References:
[1]

J. Geom. Anal., 16 (2006), 431-453. doi: 10.1007/BF02922061.  Google Scholar

[2]

Comm. Partial Differential Equations, 28 (2003), 1161-1181. doi: 10.1081/PDE-120021190.  Google Scholar

[3]

Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, 223.  Google Scholar

[4]

J. Geom. Anal., 20 (2010), 39-62. doi: 10.1007/s12220-009-9105-8.  Google Scholar

[5]

Illinois J. Math., 56 (2012), 415-422. Google Scholar

[6]

Soc. Math. Fr., Paris, 1978. Astérisque, 57.  Google Scholar

[7]

Ann. Inst. Fourier (Grenoble), 28 (1978), 177-202.  Google Scholar

[8]

Hermann, Paris, 1991.  Google Scholar

[9]

Amer. J. Math., 132 (2010), 201-256. doi: 10.1353/ajm.0.0101.  Google Scholar

[10]

Rev. Mat. Iberoam., 28 (2012), 1143-1164. doi: 10.4171/RMI/707.  Google Scholar

[11]

Ann. of Math., 146 (1997), 693-724. doi: 10.2307/2952458.  Google Scholar

[12]

Ann. of Math., 149 (1999), 475-496. doi: 10.2307/120971.  Google Scholar

[13]

J. Amer. Math. Soc., 15 (2002), 469-496. doi: 10.1090/S0894-0347-01-00379-4.  Google Scholar

[1]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[2]

Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224

[3]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[4]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[5]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[6]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[7]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[8]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[9]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[10]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[11]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[12]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[13]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[14]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[15]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[16]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[17]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[18]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[19]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[20]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (150)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]