\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity

Abstract Related Papers Cited by
  • In this paper we study the initial problem for the Hall-magnetohydrodynamics system with partial viscosity in $ R^n(n=2, 3)$. We obtain a Beale-Kato-Majda type blow up criterion of smooth solutions.
    Mathematics Subject Classification: Primary: 76B03; Secondary: 76W05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Acheritogaray, P. Degond, A. Frouvelle and J. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system, Kine. Rela. Mode., 4 (2011), 901-918.doi: 10.3934/krm.2011.4.901.

    [2]

    D. Chae, P. Degond and J. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. de l'Institut Henri Poincare (C) Non Linear Anal., in press. doi: 10.1016/j.anihpc.2013.04.006.

    [3]

    D. Chae and M. schonbek, On the temporal decay for the Hall-magnetohydrodynamics equations, J. Diff. Equations 255 (2013), 3971-3982.

    [4]

    D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, arXiv:1305.4681v1.

    [5]

    M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Commun. Pure and Appl. Math., 36 (1983), 635-666.doi: 10.1002/cpa.3160360506.

    [6]

    J. Wu, Regularity results for weak solutions of the 3D MHD equations, Discrete Contin. Dyn. Syst., 10 (2004), 543-556.doi: 10.3934/dcds.2004.10.543.

    [7]

    C. He and Z. P. Xin, Partial regularity of suitable weak sokutions to the incompressible magnetohydrodynamics equations, J. Funct. Anal., 227 (2005), 113-152.doi: 10.1016/j.jfa.2005.06.009.

    [8]

    Gala Sadek, A note on the blow-up criterion of smooth solutions to the 3D incompressible MHD equations, Acta Math. Appl. Sin. Engl. Ser., 28 (2012), 639-642.doi: 10.1007/s10255-012-0175-1.

    [9]

    Gala Sadek, A new regularity criterion for the 3D MHD equations in $\mathbbR^3$, Commun. Pure Appl. Anal., 11 (2012), 1353-1360.doi: 10.3934/cpaa.2012.11.973.

    [10]

    Y. Zhou, Remarks on regularities for the 3D MHD equations, Discrete Contin. Dyn. Syst., 12 (2005), 881-886.doi: 10.3934/dcds.2005.12.881.

    [11]

    Y. Zhou, Regularity criteria for the generalized viscous MHD equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 491-505.doi: 10.1016/j.anihpc.2006.03.014.

    [12]

    Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space, Z. Angew. Math. Phys., 61 (2010),193-199.doi: 10.1007/s00033-009-0023-1.

    [13]

    Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field, Nonlinear Anal, 72 (2010), 3643-3648.doi: 10.1016/j.na.2009.12.045.

    [14]

    Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations, Forum Math., 24 (2012), 691-708.doi: 10.1515/form.2011.079.

    [15]

    X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations involving partial components, Nonlinear Anal. Real World Appl., 13 (2012), 410-418.doi: 10.1016/j.nonrwa.2011.07.055.

    [16]

    C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Diff. Equations, 248 (2010), 2263-2274.doi: 10.1016/j.jde.2009.09.020.

    [17]

    Z. Lei and Y. Zhou, BKM criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25 (2009), 575-583.doi: 10.3934/dcds.2009.25.575.

    [18]

    Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, arXiv:1212.5968v1.

    [19]

    Y.-Z. Wang, S. Wang and Y.-X. Wang, Regularity criteria for weak solution to the 3D magnetohydrodynamic equations, Acta Math. Scientia, 32 (2012), 1063-1072.doi: 10.1016/S0252-9602(12)60079-4.

    [20]

    Y.-Z. Wang, H. J. Zhao and Y.-X. Wang, A logarithmally improved blow up criterion of smooth solutions for the three-dimensional MHD equations, International Journal of Mathematics, 23 (2012), 1250027 (12 pages).doi: 10.1142/S0129167X12500279.

    [21]

    J. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66.doi: 10.1007/BF01212349.

    [22]

    H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.doi: 10.1007/s002090100332.

    [23]

    Y.-Z. Wang, L. Hu and Y.-X. Wang, A Beale-Kato-Madja Criterion for Magneto-Micropolar Fluid Equations with Partial Viscosity, Boundary Value Problems, Volume 2011, Article ID 128614, 14 pages.doi: 10.1155/2011/128614.

    [24]

    Y.-Z. Wang, Y. Li and Y.-X. Wang, Blow-up criterion of smooth solutions for magneto-micropolar fluid equations with partial viscosity, Boundary Value Problems, Volume 2011.doi: 10.1186/1687-2770-2011-11.

    [25]

    Y.-Z. Wang and Y.-X. Wang, Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity, Mathematical Methods in the Applied Sciences, 34 (2011), 2125-2135.doi: 10.1002/mma.1510.

    [26]

    H. Triebel, Theory of Function Spaces, Monograph in Mathematics, vol. 78. Birkhauser: Basel, 1983.

    [27]

    J. Chemin, Perfect Incompressible Fluids, Oxford Lecture Ser. Math. Appl., {14}, The Clarendon Press Oxford Univ. Press, New York, 1998.

    [28]

    A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press: Cambridge, 2002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return