May  2014, 13(3): 1327-1336. doi: 10.3934/cpaa.2014.13.1327

On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity

1. 

School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011

2. 

School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou, 450011, China

Received  September 2013 Revised  October 2013 Published  December 2013

In this paper we study the initial problem for the Hall-magnetohydrodynamics system with partial viscosity in $ R^n(n=2, 3)$. We obtain a Beale-Kato-Majda type blow up criterion of smooth solutions.
Citation: Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327
References:
[1]

M. Acheritogaray, P. Degond, A. Frouvelle and J. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system,, \emph{Kine. Rela. Mode.}, 4 (2011), 901.  doi: 10.3934/krm.2011.4.901.  Google Scholar

[2]

D. Chae, P. Degond and J. Liu, Well-posedness for Hall-magnetohydrodynamics,, \emph{Ann. de l'Institut Henri Poincare (C) Non Linear Anal.}, ().  doi: 10.1016/j.anihpc.2013.04.006.  Google Scholar

[3]

D. Chae and M. schonbek, On the temporal decay for the Hall-magnetohydrodynamics equations,, \emph{J. Diff. Equations} \textbf{255} (2013), 255 (2013), 3971.   Google Scholar

[4]

D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics,, arXiv:1305.4681v1., ().   Google Scholar

[5]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Commun. Pure and Appl. Math.}, 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[6]

J. Wu, Regularity results for weak solutions of the 3D MHD equations,, \emph{Discrete Contin. Dyn. Syst.}, 10 (2004), 543.  doi: 10.3934/dcds.2004.10.543.  Google Scholar

[7]

C. He and Z. P. Xin, Partial regularity of suitable weak sokutions to the incompressible magnetohydrodynamics equations,, \emph{J. Funct. Anal.}, 227 (2005), 113.  doi: 10.1016/j.jfa.2005.06.009.  Google Scholar

[8]

Gala Sadek, A note on the blow-up criterion of smooth solutions to the 3D incompressible MHD equations,, \emph{Acta Math. Appl. Sin. Engl. Ser.}, 28 (2012), 639.  doi: 10.1007/s10255-012-0175-1.  Google Scholar

[9]

Gala Sadek, A new regularity criterion for the 3D MHD equations in $\mathbbR^3$,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 1353.  doi: 10.3934/cpaa.2012.11.973.  Google Scholar

[10]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, \emph{Discrete Contin. Dyn. Syst.}, 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[11]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 24 (2007), 491.  doi: 10.1016/j.anihpc.2006.03.014.  Google Scholar

[12]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, \emph{Z. Angew. Math. Phys.}, 61 (2010), 193.  doi: 10.1007/s00033-009-0023-1.  Google Scholar

[13]

Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field,, \emph{Nonlinear Anal}, 72 (2010), 3643.  doi: 10.1016/j.na.2009.12.045.  Google Scholar

[14]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations,, \emph{Forum Math.}, 24 (2012), 691.  doi: 10.1515/form.2011.079.  Google Scholar

[15]

X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations involving partial components,, \emph{Nonlinear Anal. Real World Appl.}, 13 (2012), 410.  doi: 10.1016/j.nonrwa.2011.07.055.  Google Scholar

[16]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, \emph{J. Diff. Equations}, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[17]

Z. Lei and Y. Zhou, BKM criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, \emph{Discrete Contin. Dyn. Syst.}, 25 (2009), 575.  doi: 10.3934/dcds.2009.25.575.  Google Scholar

[18]

Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions,, arXiv:1212.5968v1., ().   Google Scholar

[19]

Y.-Z. Wang, S. Wang and Y.-X. Wang, Regularity criteria for weak solution to the 3D magnetohydrodynamic equations,, \emph{Acta Math. Scientia}, 32 (2012), 1063.  doi: 10.1016/S0252-9602(12)60079-4.  Google Scholar

[20]

Y.-Z. Wang, H. J. Zhao and Y.-X. Wang, A logarithmally improved blow up criterion of smooth solutions for the three-dimensional MHD equations,, \emph{International Journal of Mathematics}, 23 (2012).  doi: 10.1142/S0129167X12500279.  Google Scholar

[21]

J. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, \emph{Comm. Math. Phys.}, 94 (1984), 61.  doi: 10.1007/BF01212349.  Google Scholar

[22]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, \emph{Math. Z.}, 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[23]

Y.-Z. Wang, L. Hu and Y.-X. Wang, A Beale-Kato-Madja Criterion for Magneto-Micropolar Fluid Equations with Partial Viscosity,, \emph{Boundary Value Problems}, (2011).  doi: 10.1155/2011/128614.  Google Scholar

[24]

Y.-Z. Wang, Y. Li and Y.-X. Wang, Blow-up criterion of smooth solutions for magneto-micropolar fluid equations with partial viscosity,, Boundary Value Problems, (2011).  doi: 10.1186/1687-2770-2011-11.  Google Scholar

[25]

Y.-Z. Wang and Y.-X. Wang, Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity,, \emph{Mathematical Methods in the Applied Sciences}, 34 (2011), 2125.  doi: 10.1002/mma.1510.  Google Scholar

[26]

H. Triebel, Theory of Function Spaces,, Monograph in Mathematics, (1983).   Google Scholar

[27]

J. Chemin, Perfect Incompressible Fluids,, Oxford Lecture Ser. Math. Appl., (1998).   Google Scholar

[28]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press: Cambridge, (2002).   Google Scholar

show all references

References:
[1]

M. Acheritogaray, P. Degond, A. Frouvelle and J. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system,, \emph{Kine. Rela. Mode.}, 4 (2011), 901.  doi: 10.3934/krm.2011.4.901.  Google Scholar

[2]

D. Chae, P. Degond and J. Liu, Well-posedness for Hall-magnetohydrodynamics,, \emph{Ann. de l'Institut Henri Poincare (C) Non Linear Anal.}, ().  doi: 10.1016/j.anihpc.2013.04.006.  Google Scholar

[3]

D. Chae and M. schonbek, On the temporal decay for the Hall-magnetohydrodynamics equations,, \emph{J. Diff. Equations} \textbf{255} (2013), 255 (2013), 3971.   Google Scholar

[4]

D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics,, arXiv:1305.4681v1., ().   Google Scholar

[5]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Commun. Pure and Appl. Math.}, 36 (1983), 635.  doi: 10.1002/cpa.3160360506.  Google Scholar

[6]

J. Wu, Regularity results for weak solutions of the 3D MHD equations,, \emph{Discrete Contin. Dyn. Syst.}, 10 (2004), 543.  doi: 10.3934/dcds.2004.10.543.  Google Scholar

[7]

C. He and Z. P. Xin, Partial regularity of suitable weak sokutions to the incompressible magnetohydrodynamics equations,, \emph{J. Funct. Anal.}, 227 (2005), 113.  doi: 10.1016/j.jfa.2005.06.009.  Google Scholar

[8]

Gala Sadek, A note on the blow-up criterion of smooth solutions to the 3D incompressible MHD equations,, \emph{Acta Math. Appl. Sin. Engl. Ser.}, 28 (2012), 639.  doi: 10.1007/s10255-012-0175-1.  Google Scholar

[9]

Gala Sadek, A new regularity criterion for the 3D MHD equations in $\mathbbR^3$,, \emph{Commun. Pure Appl. Anal.}, 11 (2012), 1353.  doi: 10.3934/cpaa.2012.11.973.  Google Scholar

[10]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, \emph{Discrete Contin. Dyn. Syst.}, 12 (2005), 881.  doi: 10.3934/dcds.2005.12.881.  Google Scholar

[11]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 24 (2007), 491.  doi: 10.1016/j.anihpc.2006.03.014.  Google Scholar

[12]

Y. Zhou and S. Gala, Regularity criteria for the solutions to the 3D MHD equations in the multiplier space,, \emph{Z. Angew. Math. Phys.}, 61 (2010), 193.  doi: 10.1007/s00033-009-0023-1.  Google Scholar

[13]

Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field,, \emph{Nonlinear Anal}, 72 (2010), 3643.  doi: 10.1016/j.na.2009.12.045.  Google Scholar

[14]

Y. Zhou and J. Fan, Logarithmically improved regularity criteria for the 3D viscous MHD equations,, \emph{Forum Math.}, 24 (2012), 691.  doi: 10.1515/form.2011.079.  Google Scholar

[15]

X. Jia and Y. Zhou, Regularity criteria for the 3D MHD equations involving partial components,, \emph{Nonlinear Anal. Real World Appl.}, 13 (2012), 410.  doi: 10.1016/j.nonrwa.2011.07.055.  Google Scholar

[16]

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations,, \emph{J. Diff. Equations}, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[17]

Z. Lei and Y. Zhou, BKM criterion and global weak solutions for magnetohydrodynamics with zero viscosity,, \emph{Discrete Contin. Dyn. Syst.}, 25 (2009), 575.  doi: 10.3934/dcds.2009.25.575.  Google Scholar

[18]

Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions,, arXiv:1212.5968v1., ().   Google Scholar

[19]

Y.-Z. Wang, S. Wang and Y.-X. Wang, Regularity criteria for weak solution to the 3D magnetohydrodynamic equations,, \emph{Acta Math. Scientia}, 32 (2012), 1063.  doi: 10.1016/S0252-9602(12)60079-4.  Google Scholar

[20]

Y.-Z. Wang, H. J. Zhao and Y.-X. Wang, A logarithmally improved blow up criterion of smooth solutions for the three-dimensional MHD equations,, \emph{International Journal of Mathematics}, 23 (2012).  doi: 10.1142/S0129167X12500279.  Google Scholar

[21]

J. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, \emph{Comm. Math. Phys.}, 94 (1984), 61.  doi: 10.1007/BF01212349.  Google Scholar

[22]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, \emph{Math. Z.}, 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[23]

Y.-Z. Wang, L. Hu and Y.-X. Wang, A Beale-Kato-Madja Criterion for Magneto-Micropolar Fluid Equations with Partial Viscosity,, \emph{Boundary Value Problems}, (2011).  doi: 10.1155/2011/128614.  Google Scholar

[24]

Y.-Z. Wang, Y. Li and Y.-X. Wang, Blow-up criterion of smooth solutions for magneto-micropolar fluid equations with partial viscosity,, Boundary Value Problems, (2011).  doi: 10.1186/1687-2770-2011-11.  Google Scholar

[25]

Y.-Z. Wang and Y.-X. Wang, Blow-up criterion for two-dimensional magneto-micropolar fluid equations with partial viscosity,, \emph{Mathematical Methods in the Applied Sciences}, 34 (2011), 2125.  doi: 10.1002/mma.1510.  Google Scholar

[26]

H. Triebel, Theory of Function Spaces,, Monograph in Mathematics, (1983).   Google Scholar

[27]

J. Chemin, Perfect Incompressible Fluids,, Oxford Lecture Ser. Math. Appl., (1998).   Google Scholar

[28]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press: Cambridge, (2002).   Google Scholar

[1]

Huali Zhang. Global large smooth solutions for 3-D Hall-magnetohydrodynamics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6669-6682. doi: 10.3934/dcds.2019290

[2]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[3]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[4]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[5]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[6]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[7]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[8]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[9]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[10]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[11]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[12]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[13]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[14]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[15]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[16]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[17]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[18]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[19]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[20]

Vo Anh Khoa, Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms. Evolution Equations & Control Theory, 2019, 8 (2) : 359-395. doi: 10.3934/eect.2019019

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]