July  2014, 13(4): 1361-1393. doi: 10.3934/cpaa.2014.13.1361

Infinite-energy solutions for the Navier-Stokes equations in a strip revisited

1. 

University of Surrey, Guildford, Gu27XH, Surrey, United Kingdom

2. 

Department of Mathematics, University of Surrey, Guildford, GU2 7XH

Received  October 2013 Revised  January 2014 Published  February 2014

The paper deals with the Navier-Stokes equations in a strip in the class of spatially non-decaying (in nite-energy) solutions belonging to the properly chosen uniformly local Sobolev spaces. The global well-posedness and dissipativity of the Navier-Stokes equations in a strip in such spaces has been rst established in [22]. However, the proof given there contains a rather essential error and the aim of the present paper is to correct this error and to show that the main results of [22] remain true.
Citation: Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361
References:
[1]

F. Abergel, Attractor for a Navier-Stokes flow in an unbounded domain. Attractors, inertial manifolds and their approximation (Marseille-Luminy, 1987)., \emph{RAIRO Model. Math. Anal. Numer.}, 23 (1989), 359.   Google Scholar

[2]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains,, \emph{J. Differential Equations}, 83 (1990), 85.  doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[3]

A. Afendikov and A. Mielke, Dynamical properties of spatially non-decaying 2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip,, \emph{J. Math. Fluid Mech.}, 7 (2005), 51.  doi: 10.1007/s00021-004-0131-9.  Google Scholar

[4]

H. Amann, On the strong solvability of the Navier-Stokes equations,, \emph{Jour. Math.Fluid Mechanics}, 2 (2000), 16.  doi: 10.1007/s000210050018.  Google Scholar

[5]

A. Babin, Asymptotic Expansions at infinity of a strongly perturbed Poiseuille flow,, \emph{Advances in Soviet Math.}, 10 (1992), 1.   Google Scholar

[6]

A. Babin, The attractor of a Navier-Stokes system in an unbounded channel-like domain,, \emph{J. Dynam. Differential Equations}, 4 (1992), 555.  doi: 10.1007/BF01048260.  Google Scholar

[7]

A. Babin and M.Vishik, Attractors of partial differential evolution equations in an unbounded domain,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 116 (1990), 221.  doi: 10.1017/S0308210500031498.  Google Scholar

[8]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Nauka, (1989).   Google Scholar

[9]

M. Efendiev and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 625.  doi: 10.1002/cpa.1011.  Google Scholar

[10]

Y. Giga, S. Matsui and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity,, \emph{J. Math. Fluid Mech.}, 3 (2001), 302.  doi: 10.1007/PL00000973.  Google Scholar

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[12]

P. Lemarie-Rieusset, Recent developments in the Navier-Stokes problem,, Chapman $&$ Hall/CRC Research Notes in Mathematics, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[13]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains - existence and comparison,, \emph{Nonlinearity}, 8 (1995), 743.   Google Scholar

[14]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in \emph{Handbook of Differential Equations: Evolutionary Equations}, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[15]

J. Pennant and S. Zelik, Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\R^3$,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 461.   Google Scholar

[16]

S. Revina and V. Yudovich, $L^p$-estimates for the resolvent of the Stokes operator in an infinite cylinder,, \emph{(Russian) Mat. Sb.}, 187 (1996), 97.  doi: 10.1070/SM1996v187n06ABEH000139.  Google Scholar

[17]

O. Sawada and Y. Taniuchi, A remark on $L^\infty$-solutions to the 2D Navier-Stokes equations,, \emph{J. Math. Fluid Mech.}, 9 (2007), 533.  doi: 10.1007/s00021-005-0212-4.  Google Scholar

[18]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland, (1977).   Google Scholar

[19]

R. Temam, Infnite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematics Series, (1988).   Google Scholar

[20]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978).   Google Scholar

[21]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip,, \emph{Glasg. Math. J.}, 49 (2007), 525.  doi: 10.1017/S0017089507003849.  Google Scholar

[22]

S. Zelik, Weak spatially nondecaying solutions of 3D Navier-Stokes equations in cylindrical domains,, Instability in models connected with fluid flows. II, (2008), 255.  doi: 10.1007/978-0-387-75219-8_6.  Google Scholar

[23]

S. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity,, \emph{Comm. Pure Appl. Math.}, 56 (2003), 584.  doi: 10.1002/cpa.10068.  Google Scholar

[24]

S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\R^2$,, \emph{Jour. Math. Fluid Mech.}, 15 (2013), 717.  doi: 10.1007/s00021-013-0144-3.  Google Scholar

show all references

References:
[1]

F. Abergel, Attractor for a Navier-Stokes flow in an unbounded domain. Attractors, inertial manifolds and their approximation (Marseille-Luminy, 1987)., \emph{RAIRO Model. Math. Anal. Numer.}, 23 (1989), 359.   Google Scholar

[2]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains,, \emph{J. Differential Equations}, 83 (1990), 85.  doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[3]

A. Afendikov and A. Mielke, Dynamical properties of spatially non-decaying 2D Navier-Stokes flows with Kolmogorov forcing in an infinite strip,, \emph{J. Math. Fluid Mech.}, 7 (2005), 51.  doi: 10.1007/s00021-004-0131-9.  Google Scholar

[4]

H. Amann, On the strong solvability of the Navier-Stokes equations,, \emph{Jour. Math.Fluid Mechanics}, 2 (2000), 16.  doi: 10.1007/s000210050018.  Google Scholar

[5]

A. Babin, Asymptotic Expansions at infinity of a strongly perturbed Poiseuille flow,, \emph{Advances in Soviet Math.}, 10 (1992), 1.   Google Scholar

[6]

A. Babin, The attractor of a Navier-Stokes system in an unbounded channel-like domain,, \emph{J. Dynam. Differential Equations}, 4 (1992), 555.  doi: 10.1007/BF01048260.  Google Scholar

[7]

A. Babin and M.Vishik, Attractors of partial differential evolution equations in an unbounded domain,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 116 (1990), 221.  doi: 10.1017/S0308210500031498.  Google Scholar

[8]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Nauka, (1989).   Google Scholar

[9]

M. Efendiev and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 625.  doi: 10.1002/cpa.1011.  Google Scholar

[10]

Y. Giga, S. Matsui and O. Sawada, Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity,, \emph{J. Math. Fluid Mech.}, 3 (2001), 302.  doi: 10.1007/PL00000973.  Google Scholar

[11]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[12]

P. Lemarie-Rieusset, Recent developments in the Navier-Stokes problem,, Chapman $&$ Hall/CRC Research Notes in Mathematics, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[13]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains - existence and comparison,, \emph{Nonlinearity}, 8 (1995), 743.   Google Scholar

[14]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in \emph{Handbook of Differential Equations: Evolutionary Equations}, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[15]

J. Pennant and S. Zelik, Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\R^3$,, \emph{Comm. Pure Appl. Anal.}, 12 (2013), 461.   Google Scholar

[16]

S. Revina and V. Yudovich, $L^p$-estimates for the resolvent of the Stokes operator in an infinite cylinder,, \emph{(Russian) Mat. Sb.}, 187 (1996), 97.  doi: 10.1070/SM1996v187n06ABEH000139.  Google Scholar

[17]

O. Sawada and Y. Taniuchi, A remark on $L^\infty$-solutions to the 2D Navier-Stokes equations,, \emph{J. Math. Fluid Mech.}, 9 (2007), 533.  doi: 10.1007/s00021-005-0212-4.  Google Scholar

[18]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland, (1977).   Google Scholar

[19]

R. Temam, Infnite-Dimensional Dynamical Systems in Mechanics and Physics,, Applied Mathematics Series, (1988).   Google Scholar

[20]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978).   Google Scholar

[21]

S. Zelik, Spatially nondecaying solutions of the 2D Navier-Stokes equation in a strip,, \emph{Glasg. Math. J.}, 49 (2007), 525.  doi: 10.1017/S0017089507003849.  Google Scholar

[22]

S. Zelik, Weak spatially nondecaying solutions of 3D Navier-Stokes equations in cylindrical domains,, Instability in models connected with fluid flows. II, (2008), 255.  doi: 10.1007/978-0-387-75219-8_6.  Google Scholar

[23]

S. Zelik, Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity,, \emph{Comm. Pure Appl. Math.}, 56 (2003), 584.  doi: 10.1002/cpa.10068.  Google Scholar

[24]

S. Zelik, Infinite energy solutions for damped Navier-Stokes equations in $\R^2$,, \emph{Jour. Math. Fluid Mech.}, 15 (2013), 717.  doi: 10.1007/s00021-013-0144-3.  Google Scholar

[1]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[2]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[3]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[4]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[5]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[6]

Pedro Marín-Rubio, Antonio M. Márquez-Durán, José Real. Pullback attractors for globally modified Navier-Stokes equations with infinite delays. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 779-796. doi: 10.3934/dcds.2011.31.779

[7]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[8]

Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008

[9]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[10]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[11]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[12]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[13]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[14]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[15]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[16]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[17]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[18]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

[19]

Rafaela Guberović. Smoothness of Koch-Tataru solutions to the Navier-Stokes equations revisited. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 231-236. doi: 10.3934/dcds.2010.27.231

[20]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]