July  2014, 13(4): 1395-1406. doi: 10.3934/cpaa.2014.13.1395

Global existence of solutions for the thermoelastic Bresse system

1. 

Department of Applied Mathematics, Donghua University, Shanghai 201620

2. 

College of Information Science and Technology, Donghua University, Shanghai 201620

3. 

College of Science, Shanghai Second Polytechnic University, Shanghai, 201209, China

Received  June 2011 Revised  December 2013 Published  February 2014

In this paper, using the semigroup approach, we obtain the global existence of solutions for linear (nonlinear) homogeneous (nonhomogeneous) thermoelastic Bresse System.
Citation: Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1395-1406. doi: 10.3934/cpaa.2014.13.1395
References:
[1]

J. A. C. Bresse, Cours de Méchanique Appliquée, Mallet Bachelier, 1859. doi: 10.3934/krm.2011.4.901.

[2]

C. M. Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 247-271. doi: 10.1016/j.anihpc.2013.04.006.

[3]

C. M. Dafermos, Asymptotic stability in viscoelascity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[4]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelascity, J. Differential Equations, 7 (1990), 554-569.

[5]

R. H. Fabiano and K. Ito, Semigroup theory and numerical approximation for equations arising in linear viscoelascity, SIAM J. Math. Anal., 21 (1990), 374-393. doi: 10.1002/cpa.3160360506.

[6]

L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904. doi: 10.3934/dcds.2004.10.543.

[7]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167 (1992), 429-442. doi: 10.1016/j.jfa.2005.06.009.

[8]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56. doi: 10.1007/s10255-012-0175-1.

[9]

K. Liu and Z. Liu, On the type of $C_0$-semigroup associated with the abstract linear viscoelastic system, Z. angew. Math. Phys., 47 (1996), 1-15. doi: 10.3934/cpaa.2012.11.973.

[10]

W. J. Liu, Partial exact controllability and exponential stability in higher dimensional linear thermoelascity, ESAIM: Control Optim. Calc. Var., 3 (1998), 23-48. doi: 10.3934/dcds.2005.12.881.

[11]

W. J. Liu, The exponential stabilization of higher-dimensional linear system of thermoviscoelasticity, J. Math. Pures Appl., 77 (1998), 355-386. doi: 10.1016/j.anihpc.2006.03.014.

[12]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. angew. Math. Phys., 60 (2009), 54-69. doi: 10.1007/s00033-009-0023-1.

[13]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity, Quart. Appl. Math., LIV (1996), 21-31. doi: 10.1016/j.na.2009.12.045.

[14]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Research Notes in Mathematics, 389, Chapman & Hall/CRC, Boca Raton, FL, 1999. doi: 10.1515/form.2011.079.

[15]

Z. Ma, Exponential stability and global attractors for a thermoelastic Bresse system, Adv. Difference Equations, 1 (2010), 1-17. doi: 10.1016/j.nonrwa.2011.07.055.

[16]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl., 348 (2008), 298-307. doi: 10.1016/j.jde.2009.09.020.

[17]

J. E. Muñoz Rivera and H. D. Fernández Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502. doi: 10.3934/dcds.2009.25.575.

[18]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, Berlin, Heidelbery, Tokyo, 1983.

[19]

J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.

[20]

Y. Qin and Z. Ma, Global existence of the higher-dimensional linear system of thermoviscoelasticity, Preprint. doi: 10.1142/S0129167X12500279.

[21]

Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, Operator Theory, Advances and Applications, Vol. 184, Birkh\"auser, Basel-Boston-Berlin.

[22]

Y. Qin, Universal attractor in $H^4$ for the nonlinear one-dimensional compressible Navier -Stokes equations, J. Differential Equations, 207 (2004), 21-72. doi: 10.1007/s002090100332.

[23]

Y. Qin and J. E. Muñoz Rivera, Universal attractors for a nonlinear one-dimensional heat-conductive viscous real gas, Proc. Roy. Soc. Edinburgh, 132(A) (2002), 685-709. doi: 10.1155/2011/128614.

[24]

Y. Qin, S. Deng and B. W. Schulze, Uniform compact attractors for a nonlinear non-autonomous equation of viscoelastisity, J. Partial Differential Equations, 22 (2009), 152-192. doi: 10.1186/1687-2770-2011-11.

[25]

R. Racke, Y. Shibata and S. Zheng, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math., 4 (1993), 751-763. doi: 10.1002/mma.1510.

[26]

R. Racke and J. E. Muñoz Rivera, Midly dissipative nonlinear Tymoshenko systems-Global existence and exponential stability, J. Math. Appl. Anal., 276 (2002), 248-278.

[27]

Y. Shibata, Neumann problem for one-dimensional nonlinear thermoelascity, Banach Center Publication, 27 (1992), 457-480.

[28]

M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelascity, Arch. Rational Mech. Anal., 76 (1981), 97-133.

[29]

S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 6 (1921), 744-746.

[30]

X. Zhang and E. Zuazua, Decay of solutions of the system of thermoelasticity of type III, Comm. Contemp. Math., 5 (2003), 25-83.

[31]

S. Zheng, Nonlinear Evolution Equations, Pitman Monogr. Survey. Pure Appl. Math., Vol. 133, CRC Press, USA, 2004.

[32]

S. Zheng and Y. Qin, Maximal attractor for the system of one-dimensional polytropic viscous ideal gas, Quart. Appl. Math., 3 (2001), 579-599.

[33]

S. Zheng and Y. Qin, Universal attractors for the Navier-Stokes equations of compressible and heat conductive fluids in bounded annular domains in $R^n$, Arch. Rational Mech. Anal., 160 (2001), 153-179.

show all references

References:
[1]

J. A. C. Bresse, Cours de Méchanique Appliquée, Mallet Bachelier, 1859. doi: 10.3934/krm.2011.4.901.

[2]

C. M. Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 247-271. doi: 10.1016/j.anihpc.2013.04.006.

[3]

C. M. Dafermos, Asymptotic stability in viscoelascity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[4]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelascity, J. Differential Equations, 7 (1990), 554-569.

[5]

R. H. Fabiano and K. Ito, Semigroup theory and numerical approximation for equations arising in linear viscoelascity, SIAM J. Math. Anal., 21 (1990), 374-393. doi: 10.1002/cpa.3160360506.

[6]

L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904. doi: 10.3934/dcds.2004.10.543.

[7]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167 (1992), 429-442. doi: 10.1016/j.jfa.2005.06.009.

[8]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56. doi: 10.1007/s10255-012-0175-1.

[9]

K. Liu and Z. Liu, On the type of $C_0$-semigroup associated with the abstract linear viscoelastic system, Z. angew. Math. Phys., 47 (1996), 1-15. doi: 10.3934/cpaa.2012.11.973.

[10]

W. J. Liu, Partial exact controllability and exponential stability in higher dimensional linear thermoelascity, ESAIM: Control Optim. Calc. Var., 3 (1998), 23-48. doi: 10.3934/dcds.2005.12.881.

[11]

W. J. Liu, The exponential stabilization of higher-dimensional linear system of thermoviscoelasticity, J. Math. Pures Appl., 77 (1998), 355-386. doi: 10.1016/j.anihpc.2006.03.014.

[12]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Z. angew. Math. Phys., 60 (2009), 54-69. doi: 10.1007/s00033-009-0023-1.

[13]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity, Quart. Appl. Math., LIV (1996), 21-31. doi: 10.1016/j.na.2009.12.045.

[14]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Research Notes in Mathematics, 389, Chapman & Hall/CRC, Boca Raton, FL, 1999. doi: 10.1515/form.2011.079.

[15]

Z. Ma, Exponential stability and global attractors for a thermoelastic Bresse system, Adv. Difference Equations, 1 (2010), 1-17. doi: 10.1016/j.nonrwa.2011.07.055.

[16]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III, J. Math. Anal. Appl., 348 (2008), 298-307. doi: 10.1016/j.jde.2009.09.020.

[17]

J. E. Muñoz Rivera and H. D. Fernández Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502. doi: 10.3934/dcds.2009.25.575.

[18]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, Berlin, Heidelbery, Tokyo, 1983.

[19]

J. Prüss, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.

[20]

Y. Qin and Z. Ma, Global existence of the higher-dimensional linear system of thermoviscoelasticity, Preprint. doi: 10.1142/S0129167X12500279.

[21]

Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, Operator Theory, Advances and Applications, Vol. 184, Birkh\"auser, Basel-Boston-Berlin.

[22]

Y. Qin, Universal attractor in $H^4$ for the nonlinear one-dimensional compressible Navier -Stokes equations, J. Differential Equations, 207 (2004), 21-72. doi: 10.1007/s002090100332.

[23]

Y. Qin and J. E. Muñoz Rivera, Universal attractors for a nonlinear one-dimensional heat-conductive viscous real gas, Proc. Roy. Soc. Edinburgh, 132(A) (2002), 685-709. doi: 10.1155/2011/128614.

[24]

Y. Qin, S. Deng and B. W. Schulze, Uniform compact attractors for a nonlinear non-autonomous equation of viscoelastisity, J. Partial Differential Equations, 22 (2009), 152-192. doi: 10.1186/1687-2770-2011-11.

[25]

R. Racke, Y. Shibata and S. Zheng, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity, Quart. Appl. Math., 4 (1993), 751-763. doi: 10.1002/mma.1510.

[26]

R. Racke and J. E. Muñoz Rivera, Midly dissipative nonlinear Tymoshenko systems-Global existence and exponential stability, J. Math. Appl. Anal., 276 (2002), 248-278.

[27]

Y. Shibata, Neumann problem for one-dimensional nonlinear thermoelascity, Banach Center Publication, 27 (1992), 457-480.

[28]

M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelascity, Arch. Rational Mech. Anal., 76 (1981), 97-133.

[29]

S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 6 (1921), 744-746.

[30]

X. Zhang and E. Zuazua, Decay of solutions of the system of thermoelasticity of type III, Comm. Contemp. Math., 5 (2003), 25-83.

[31]

S. Zheng, Nonlinear Evolution Equations, Pitman Monogr. Survey. Pure Appl. Math., Vol. 133, CRC Press, USA, 2004.

[32]

S. Zheng and Y. Qin, Maximal attractor for the system of one-dimensional polytropic viscous ideal gas, Quart. Appl. Math., 3 (2001), 579-599.

[33]

S. Zheng and Y. Qin, Universal attractors for the Navier-Stokes equations of compressible and heat conductive fluids in bounded annular domains in $R^n$, Arch. Rational Mech. Anal., 160 (2001), 153-179.

[1]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[2]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[3]

Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156

[4]

J. W. Neuberger. How to distinguish a local semigroup from a global semigroup. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5293-5303. doi: 10.3934/dcds.2013.33.5293

[5]

Armand Bernou. A semigroup approach to the convergence rate of a collisionless gas. Kinetic and Related Models, 2020, 13 (6) : 1071-1106. doi: 10.3934/krm.2020038

[6]

S. Hadd, F.Z. Lahbiri. A semigroup approach to stochastic systems with input delay at the boundary. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022004

[7]

Valentin Keyantuo, Louis Tebou, Mahamadi Warma. A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2875-2889. doi: 10.3934/dcds.2020152

[8]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[9]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[10]

Salim A. Messaoudi, Jamilu Hashim Hassan. New general decay results in a finite-memory bresse system. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1637-1662. doi: 10.3934/cpaa.2019078

[11]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[12]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[13]

Huiqiang Jiang. Global existence of solutions of an activator-inhibitor system. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 737-751. doi: 10.3934/dcds.2006.14.737

[14]

Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583

[15]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[16]

Lvqiao Liu. On the global existence to Hall-MHD system. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022044

[17]

Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316

[18]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[19]

Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177

[20]

Gianluca Mola, Noboru Okazawa, Jan Prüss, Tomomi Yokota. Semigroup-theoretic approach to identification of linear diffusion coefficients. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 777-790. doi: 10.3934/dcdss.2016028

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (125)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]