July  2014, 13(4): 1395-1406. doi: 10.3934/cpaa.2014.13.1395

Global existence of solutions for the thermoelastic Bresse system

1. 

Department of Applied Mathematics, Donghua University, Shanghai 201620

2. 

College of Information Science and Technology, Donghua University, Shanghai 201620

3. 

College of Science, Shanghai Second Polytechnic University, Shanghai, 201209, China

Received  June 2011 Revised  December 2013 Published  February 2014

In this paper, using the semigroup approach, we obtain the global existence of solutions for linear (nonlinear) homogeneous (nonhomogeneous) thermoelastic Bresse System.
Citation: Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1395-1406. doi: 10.3934/cpaa.2014.13.1395
References:
[1]

J. A. C. Bresse, Cours de Méchanique Appliquée,, Mallet Bachelier, (1859). doi: 10.3934/krm.2011.4.901.

[2]

C. M. Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity,, \emph{Arch. Rational Mech. Anal., 29 (1968), 247. doi: 10.1016/j.anihpc.2013.04.006.

[3]

C. M. Dafermos, Asymptotic stability in viscoelascity,, \emph{Arch. Rational Mech. Anal., 37 (1970), 297.

[4]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelascity,, \emph{J. Differential Equations, 7 (1990), 554.

[5]

R. H. Fabiano and K. Ito, Semigroup theory and numerical approximation for equations arising in linear viscoelascity,, \emph{SIAM J. Math. Anal.}, 21 (1990), 374. doi: 10.1002/cpa.3160360506.

[6]

L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system,, \emph{IMA J. Appl. Math.}, 75 (2010), 881. doi: 10.3934/dcds.2004.10.543.

[7]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod,, \emph{J. Math. Anal. Appl.}, 167 (1992), 429. doi: 10.1016/j.jfa.2005.06.009.

[8]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, \emph{Ann. Differential Equations}, 1 (1985), 43. doi: 10.1007/s10255-012-0175-1.

[9]

K. Liu and Z. Liu, On the type of $C_0$-semigroup associated with the abstract linear viscoelastic system,, \emph{Z. angew. Math. Phys.}, 47 (1996), 1. doi: 10.3934/cpaa.2012.11.973.

[10]

W. J. Liu, Partial exact controllability and exponential stability in higher dimensional linear thermoelascity,, \emph{ESAIM: Control Optim. Calc. Var.}, 3 (1998), 23. doi: 10.3934/dcds.2005.12.881.

[11]

W. J. Liu, The exponential stabilization of higher-dimensional linear system of thermoviscoelasticity,, \emph{J. Math. Pures Appl.}, 77 (1998), 355. doi: 10.1016/j.anihpc.2006.03.014.

[12]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system,, \emph{Z. angew. Math. Phys.}, 60 (2009), 54. doi: 10.1007/s00033-009-0023-1.

[13]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity,, \emph{Quart. Appl. Math.}, LIV (1996), 21. doi: 10.1016/j.na.2009.12.045.

[14]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, Research Notes in Mathematics, 389 (1999). doi: 10.1515/form.2011.079.

[15]

Z. Ma, Exponential stability and global attractors for a thermoelastic Bresse system,, \emph{Adv. Difference Equations}, 1 (2010), 1. doi: 10.1016/j.nonrwa.2011.07.055.

[16]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III,, \emph{J. Math. Anal. Appl.}, 348 (2008), 298. doi: 10.1016/j.jde.2009.09.020.

[17]

J. E. Muñoz Rivera and H. D. Fernández Sare, Stability of Timoshenko systems with past history,, \emph{J. Math. Anal. Appl.}, 339 (2008), 482. doi: 10.3934/dcds.2009.25.575.

[18]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).

[19]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.

[20]

Y. Qin and Z. Ma, Global existence of the higher-dimensional linear system of thermoviscoelasticity,, Preprint., (). doi: 10.1142/S0129167X12500279.

[21]

Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors,, Operator Theory, 184 ().

[22]

Y. Qin, Universal attractor in $H^4$ for the nonlinear one-dimensional compressible Navier -Stokes equations,, \emph{J. Differential Equations}, 207 (2004), 21. doi: 10.1007/s002090100332.

[23]

Y. Qin and J. E. Muñoz Rivera, Universal attractors for a nonlinear one-dimensional heat-conductive viscous real gas,, \emph{Proc. Roy. Soc. Edinburgh}, 132(A) (2002), 685. doi: 10.1155/2011/128614.

[24]

Y. Qin, S. Deng and B. W. Schulze, Uniform compact attractors for a nonlinear non-autonomous equation of viscoelastisity,, \emph{J. Partial Differential Equations}, 22 (2009), 152. doi: 10.1186/1687-2770-2011-11.

[25]

R. Racke, Y. Shibata and S. Zheng, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity,, \emph{Quart. Appl. Math.}, 4 (1993), 751. doi: 10.1002/mma.1510.

[26]

R. Racke and J. E. Muñoz Rivera, Midly dissipative nonlinear Tymoshenko systems-Global existence and exponential stability,, \emph{J. Math. Appl. Anal.}, 276 (2002), 248.

[27]

Y. Shibata, Neumann problem for one-dimensional nonlinear thermoelascity,, \emph{Banach Center Publication}, 27 (1992), 457.

[28]

M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelascity,, \emph{Arch. Rational Mech. Anal., 76 (1981), 97.

[29]

S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars,, \emph{Philosophical Magazine}, 6 (1921), 744.

[30]

X. Zhang and E. Zuazua, Decay of solutions of the system of thermoelasticity of type III,, \emph{Comm. Contemp. Math., 5 (2003), 25.

[31]

S. Zheng, Nonlinear Evolution Equations,, Pitman Monogr. Survey. Pure Appl. Math., 133 (2004).

[32]

S. Zheng and Y. Qin, Maximal attractor for the system of one-dimensional polytropic viscous ideal gas,, \emph{Quart. Appl. Math., 3 (2001), 579.

[33]

S. Zheng and Y. Qin, Universal attractors for the Navier-Stokes equations of compressible and heat conductive fluids in bounded annular domains in $R^n$,, \emph{Arch. Rational Mech. Anal., 160 (2001), 153.

show all references

References:
[1]

J. A. C. Bresse, Cours de Méchanique Appliquée,, Mallet Bachelier, (1859). doi: 10.3934/krm.2011.4.901.

[2]

C. M. Dafermos, On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity,, \emph{Arch. Rational Mech. Anal., 29 (1968), 247. doi: 10.1016/j.anihpc.2013.04.006.

[3]

C. M. Dafermos, Asymptotic stability in viscoelascity,, \emph{Arch. Rational Mech. Anal., 37 (1970), 297.

[4]

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelascity,, \emph{J. Differential Equations, 7 (1990), 554.

[5]

R. H. Fabiano and K. Ito, Semigroup theory and numerical approximation for equations arising in linear viscoelascity,, \emph{SIAM J. Math. Anal.}, 21 (1990), 374. doi: 10.1002/cpa.3160360506.

[6]

L. H. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system,, \emph{IMA J. Appl. Math.}, 75 (2010), 881. doi: 10.3934/dcds.2004.10.543.

[7]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod,, \emph{J. Math. Anal. Appl.}, 167 (1992), 429. doi: 10.1016/j.jfa.2005.06.009.

[8]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces,, \emph{Ann. Differential Equations}, 1 (1985), 43. doi: 10.1007/s10255-012-0175-1.

[9]

K. Liu and Z. Liu, On the type of $C_0$-semigroup associated with the abstract linear viscoelastic system,, \emph{Z. angew. Math. Phys.}, 47 (1996), 1. doi: 10.3934/cpaa.2012.11.973.

[10]

W. J. Liu, Partial exact controllability and exponential stability in higher dimensional linear thermoelascity,, \emph{ESAIM: Control Optim. Calc. Var.}, 3 (1998), 23. doi: 10.3934/dcds.2005.12.881.

[11]

W. J. Liu, The exponential stabilization of higher-dimensional linear system of thermoviscoelasticity,, \emph{J. Math. Pures Appl.}, 77 (1998), 355. doi: 10.1016/j.anihpc.2006.03.014.

[12]

Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system,, \emph{Z. angew. Math. Phys.}, 60 (2009), 54. doi: 10.1007/s00033-009-0023-1.

[13]

Z. Liu and S. Zheng, On the exponential stability of linear viscoelasticity and thermoviscoelasticity,, \emph{Quart. Appl. Math.}, LIV (1996), 21. doi: 10.1016/j.na.2009.12.045.

[14]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems,, Research Notes in Mathematics, 389 (1999). doi: 10.1515/form.2011.079.

[15]

Z. Ma, Exponential stability and global attractors for a thermoelastic Bresse system,, \emph{Adv. Difference Equations}, 1 (2010), 1. doi: 10.1016/j.nonrwa.2011.07.055.

[16]

S. A. Messaoudi and B. Said-Houari, Energy decay in a Timoshenko-type system of thermoelasticity of type III,, \emph{J. Math. Anal. Appl.}, 348 (2008), 298. doi: 10.1016/j.jde.2009.09.020.

[17]

J. E. Muñoz Rivera and H. D. Fernández Sare, Stability of Timoshenko systems with past history,, \emph{J. Math. Anal. Appl.}, 339 (2008), 482. doi: 10.3934/dcds.2009.25.575.

[18]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).

[19]

J. Prüss, On the spectrum of $C_0$-semigroups,, Trans. Amer. Math. Soc., 284 (1984), 847.

[20]

Y. Qin and Z. Ma, Global existence of the higher-dimensional linear system of thermoviscoelasticity,, Preprint., (). doi: 10.1142/S0129167X12500279.

[21]

Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors,, Operator Theory, 184 ().

[22]

Y. Qin, Universal attractor in $H^4$ for the nonlinear one-dimensional compressible Navier -Stokes equations,, \emph{J. Differential Equations}, 207 (2004), 21. doi: 10.1007/s002090100332.

[23]

Y. Qin and J. E. Muñoz Rivera, Universal attractors for a nonlinear one-dimensional heat-conductive viscous real gas,, \emph{Proc. Roy. Soc. Edinburgh}, 132(A) (2002), 685. doi: 10.1155/2011/128614.

[24]

Y. Qin, S. Deng and B. W. Schulze, Uniform compact attractors for a nonlinear non-autonomous equation of viscoelastisity,, \emph{J. Partial Differential Equations}, 22 (2009), 152. doi: 10.1186/1687-2770-2011-11.

[25]

R. Racke, Y. Shibata and S. Zheng, Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity,, \emph{Quart. Appl. Math.}, 4 (1993), 751. doi: 10.1002/mma.1510.

[26]

R. Racke and J. E. Muñoz Rivera, Midly dissipative nonlinear Tymoshenko systems-Global existence and exponential stability,, \emph{J. Math. Appl. Anal.}, 276 (2002), 248.

[27]

Y. Shibata, Neumann problem for one-dimensional nonlinear thermoelascity,, \emph{Banach Center Publication}, 27 (1992), 457.

[28]

M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelascity,, \emph{Arch. Rational Mech. Anal., 76 (1981), 97.

[29]

S. P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars,, \emph{Philosophical Magazine}, 6 (1921), 744.

[30]

X. Zhang and E. Zuazua, Decay of solutions of the system of thermoelasticity of type III,, \emph{Comm. Contemp. Math., 5 (2003), 25.

[31]

S. Zheng, Nonlinear Evolution Equations,, Pitman Monogr. Survey. Pure Appl. Math., 133 (2004).

[32]

S. Zheng and Y. Qin, Maximal attractor for the system of one-dimensional polytropic viscous ideal gas,, \emph{Quart. Appl. Math., 3 (2001), 579.

[33]

S. Zheng and Y. Qin, Universal attractors for the Navier-Stokes equations of compressible and heat conductive fluids in bounded annular domains in $R^n$,, \emph{Arch. Rational Mech. Anal., 160 (2001), 153.

[1]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[2]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[3]

J. W. Neuberger. How to distinguish a local semigroup from a global semigroup. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5293-5303. doi: 10.3934/dcds.2013.33.5293

[4]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[5]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[6]

Salim A. Messaoudi, Jamilu Hashim Hassan. New general decay results in a finite-memory bresse system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1637-1662. doi: 10.3934/cpaa.2019078

[7]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[8]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[9]

Huiqiang Jiang. Global existence of solutions of an activator-inhibitor system. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 737-751. doi: 10.3934/dcds.2006.14.737

[10]

Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583

[11]

Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

[12]

Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316

[13]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[14]

Wilson Lamb, Adam McBride, Louise Smith. Coagulation and fragmentation processes with evolving size and shape profiles: A semigroup approach. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5177-5187. doi: 10.3934/dcds.2013.33.5177

[15]

Gianluca Mola, Noboru Okazawa, Jan Prüss, Tomomi Yokota. Semigroup-theoretic approach to identification of linear diffusion coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 777-790. doi: 10.3934/dcdss.2016028

[16]

Jason Metcalfe, David Spencer. Global existence for a coupled wave system related to the Strauss conjecture. Communications on Pure & Applied Analysis, 2018, 17 (2) : 593-604. doi: 10.3934/cpaa.2018032

[17]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[18]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure & Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[19]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[20]

Marion Acheritogaray, Pierre Degond, Amic Frouvelle, Jian-Guo Liu. Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinetic & Related Models, 2011, 4 (4) : 901-918. doi: 10.3934/krm.2011.4.901

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]