July  2014, 13(4): 1481-1490. doi: 10.3934/cpaa.2014.13.1481

Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

2. 

Department of Mathematics, Nanjing University, Nanjing 210093

3. 

Department of Mathematics, Inha University, Incheon 402-751, South Korea

Received  June 2013 Revised  January 2014 Published  February 2014

In this paper we establish the global existence of strong solution to the density-dependent incompressible magnetohydrodynamic equations with vaccum in a bounded domain in $R^2$. Furthermore, the limit as the heat conductivity coefficient tends to zero is also obtained.
Citation: Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481
References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2nd ed., (2003).   Google Scholar

[2]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,, Studies in Mathematics and its Applications, (1990).   Google Scholar

[3]

H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory,, \emph{J. Math. Fluid Mech.}, 12 (2010), 397.  doi: 10.1007/2Fs00021-009-0295-4.  Google Scholar

[4]

J.-S. Fan and F.-C. Li, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system,, \emph{Acta Appl. Math.}, ().  doi: 10.1007/s10440-013-9857-9.  Google Scholar

[5]

J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals,, Numerical Mathematics and Scientific Computation, (2006).   Google Scholar

[6]

S. Itoh, On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluid,, \emph{Glasgow Math. J.}, 36 (1994), 123.  doi: 10.1017/S0017089500030639.  Google Scholar

[7]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, \emph{J. Differential Equations}, 254 (2013), 511.  doi: 10.1016/j.jde.2012.08.02.  Google Scholar

[8]

M. L. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations,, \emph{Arch. Ration. Mech. Anal.}, 199 (2011), 739.  doi: 10.1007/2Fs00205-010-0357-z.  Google Scholar

[9]

T. Li and T. Qin, Physics and Partial Differential Equations,, Volume 1. Translated from the Chinese original by Yachun Li. Society for Industrial and Applied Mathematics (SIAM), (2012).   Google Scholar

[10]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, The Clarendon Press, (1996).   Google Scholar

[11]

E.-H. Lieb and M. Loss, Analysis,, 2nd ed., (2001).   Google Scholar

[12]

A. Lunardi, Interpolation Theory,, 2nd ed., (2009).   Google Scholar

[13]

T. Ozawa, On critical cases of Sobolev's inequalities,, \emph{J. Funct. Anal.}, 127 (1995), 259.  doi: pii/S0022123685710129.  Google Scholar

[14]

H. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum,, \emph{Comput. Math. Appl.}, 61 (2011), 2742.  doi: 10.1016/j.camwa.2011.03.03.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2nd ed., (2003).   Google Scholar

[2]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,, Studies in Mathematics and its Applications, (1990).   Google Scholar

[3]

H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory,, \emph{J. Math. Fluid Mech.}, 12 (2010), 397.  doi: 10.1007/2Fs00021-009-0295-4.  Google Scholar

[4]

J.-S. Fan and F.-C. Li, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system,, \emph{Acta Appl. Math.}, ().  doi: 10.1007/s10440-013-9857-9.  Google Scholar

[5]

J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals,, Numerical Mathematics and Scientific Computation, (2006).   Google Scholar

[6]

S. Itoh, On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluid,, \emph{Glasgow Math. J.}, 36 (1994), 123.  doi: 10.1017/S0017089500030639.  Google Scholar

[7]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, \emph{J. Differential Equations}, 254 (2013), 511.  doi: 10.1016/j.jde.2012.08.02.  Google Scholar

[8]

M. L. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations,, \emph{Arch. Ration. Mech. Anal.}, 199 (2011), 739.  doi: 10.1007/2Fs00205-010-0357-z.  Google Scholar

[9]

T. Li and T. Qin, Physics and Partial Differential Equations,, Volume 1. Translated from the Chinese original by Yachun Li. Society for Industrial and Applied Mathematics (SIAM), (2012).   Google Scholar

[10]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, The Clarendon Press, (1996).   Google Scholar

[11]

E.-H. Lieb and M. Loss, Analysis,, 2nd ed., (2001).   Google Scholar

[12]

A. Lunardi, Interpolation Theory,, 2nd ed., (2009).   Google Scholar

[13]

T. Ozawa, On critical cases of Sobolev's inequalities,, \emph{J. Funct. Anal.}, 127 (1995), 259.  doi: pii/S0022123685710129.  Google Scholar

[14]

H. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum,, \emph{Comput. Math. Appl.}, 61 (2011), 2742.  doi: 10.1016/j.camwa.2011.03.03.  Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[8]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[11]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]