July  2014, 13(4): 1525-1539. doi: 10.3934/cpaa.2014.13.1525

Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system

1. 

LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex

2. 

Department of Mathematics, National Technical University, Zografou Campus 157 80, Athens, Greece

Received  July 2013 Revised  December 2013 Published  February 2014

We consider a semi-discrete in time relaxation scheme to discretize a damped forced nonlinear Klein-Gordon Schrödinger system. This provides us with a discrete infinite-dimensional dynamical system. We prove the existence of a finite dimensional global attractor for this dynamical system.
Citation: Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear Klein-Gordon Schrödinger system. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1525-1539. doi: 10.3934/cpaa.2014.13.1525
References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains,, \emph{J. Differential Equation, 83 (1990), 85.  doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

M. Abounouh, H. Al Moatassime, J-P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger Equations and dissipative dynamical systems,, \emph{Comm. in Pure and Applied Analysis}, 7 (2008), 211.   Google Scholar

[3]

M. Abounouh, O. Goubet and A. Hakim, Regularity of the attractor for a coupled Klein-Gordon-Schrodinger system,, \emph{Differential Integral Equations}, 16 (2003), 573.   Google Scholar

[4]

N. Akroune, Regularity of the attractor for a weakly damped Schrodinger equation on $R$,, \emph{Appl. Math. Lett.}, 12 (1999).  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[5]

J. Ball, Global attractors for damped semilinear wave equations,, \emph{Partial differential equations and applications, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

C. Besse, A relaxation scheme for nonlinear Schrödinger equations},, \emph{SIAM J. Num. Anal.}, 42 (2004), 934.  doi: 10.1137/S0036142901396521.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping,, \emph{J. of Dyn. and Diff. Equ.}, 16 (2004), 469.  doi: 10.1007/s10884-004-4289-x.  Google Scholar

[8]

M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation,, \emph{J. Comput. Phys.}, 44 (1981), 277.  doi: 10.1016/0021-9991(81)90052-8.  Google Scholar

[9]

E. Ezzoug, O. Goubet and E. Zahrouni, Semi-discrete weakly damped nonlinear 2-D Schroinger equation,, \emph{Differential Integral Equations}, 23 (2010), 237.   Google Scholar

[10]

J. M. Ghidaglia and R. Temam, Attractors for damped hyperbolic equations,, \emph{J. Math. Pures et Appli.}, 66 (1987), 273.   Google Scholar

[11]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations,, \emph{Applicable Anal.}, 60 (1996), 99.  doi: 10.1080/00036819608840420.  Google Scholar

[12]

O. Goubet and E. Zahrouni, On a time discretization of a weakly damped forced nonlinear Schrödinger equation,, \emph{Comm. in Pure and Applied Analysis}, 7 (2008), 1429.  doi: 10.3934/cpaa.2008.7.1429.  Google Scholar

[13]

B. Guo and Y. Li, Attractor for dissipative Klein-Gordon-Schrodinger equation in $R^3$,, \emph{J. Diff. Eq.}, 136 (1997), 356.  doi: 10.1006/jdeq.1996.3242.  Google Scholar

[14]

J. Hale, Asymptotic behavior of Dissipative Systems,, Math. surveys and Monographs, 25 (1988).   Google Scholar

[15]

A. Haraux, Two Remarks on Dissipative Hyperbolic Problems in nonlinear Partial Differential Equations and Their Applications, College de France Seminar, (1985).   Google Scholar

[16]

N. Karachalios, M. Stavrakakis and P. Xanthopoulos, Parametric exponential energy decay for dissipative electron-ion plasma waves,, \emph{Zeitschrift foangewandte Mathematik und Physik ZAMP}, (2005), 218.  doi: 10.1007/s00033-004-2095-2.  Google Scholar

[17]

O. Ladyzhenskaya, Attractors of Semigroups and Evolution Equations,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511569418.  Google Scholar

[18]

P. Laurençot, Long-time behaviour for weakly damped driven nonlinear Schroinger equations in $R^N$, $N\leq 3$,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[19]

K. Lu and B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains,, \emph{J. Diff. Eq.}, (2001), 281.  doi: 10.1006/jdeq.2000.3827.  Google Scholar

[20]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,, Handbook of Differential Equations, ().  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[21]

I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,, \emph{Nonlinearity}, 11 (1998), 1369.  doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[22]

M. N. Poulou and N. M. Stavrakakis, Global Attractor for a Klein-Gordon-Schrödinger Type System in all $R$,, \emph{Nonlinear Analysis: Theory, (): 2548.  doi: 10.1016/j.na.2010.12.009.  Google Scholar

[23]

M. N. Poulou and N. B. Zographopoulos, Global Attractor for a degenerate Klein - Gordon - Schrödinger Type System,, submitted., ().   Google Scholar

[24]

G. Raugel, Global attractors in partial differential equations,, \emph{Handbook of dynamical systems}, (2002), 885.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[25]

C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse,, Applied Mathematical Sciences vol. 139, (1999).   Google Scholar

[26]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).   Google Scholar

[27]

B. Wang and H. Lange, Attractors for the Klein-Gordon-Schrödinger equation,, \emph{J. of Math. Phy.}, 40 (1999).  doi: 10.1063/1.532875.  Google Scholar

[28]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrodinger equations and its applications to their attractors,, \emph{Physica D}, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[29]

Y. Yan, Attractors and dimensions for discretizations of a weakly damped Schrödinger equations and a sine-Gordon equation,, \emph{Nonlinear Anal.}, 20 (1993), 1417.  doi: 10.1016/0362-546X(93)90168-R.  Google Scholar

show all references

References:
[1]

F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains,, \emph{J. Differential Equation, 83 (1990), 85.  doi: 10.1016/0022-0396(90)90070-6.  Google Scholar

[2]

M. Abounouh, H. Al Moatassime, J-P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger Equations and dissipative dynamical systems,, \emph{Comm. in Pure and Applied Analysis}, 7 (2008), 211.   Google Scholar

[3]

M. Abounouh, O. Goubet and A. Hakim, Regularity of the attractor for a coupled Klein-Gordon-Schrodinger system,, \emph{Differential Integral Equations}, 16 (2003), 573.   Google Scholar

[4]

N. Akroune, Regularity of the attractor for a weakly damped Schrodinger equation on $R$,, \emph{Appl. Math. Lett.}, 12 (1999).  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[5]

J. Ball, Global attractors for damped semilinear wave equations,, \emph{Partial differential equations and applications, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

C. Besse, A relaxation scheme for nonlinear Schrödinger equations},, \emph{SIAM J. Num. Anal.}, 42 (2004), 934.  doi: 10.1137/S0036142901396521.  Google Scholar

[7]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping,, \emph{J. of Dyn. and Diff. Equ.}, 16 (2004), 469.  doi: 10.1007/s10884-004-4289-x.  Google Scholar

[8]

M. Delfour, M. Fortin and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation,, \emph{J. Comput. Phys.}, 44 (1981), 277.  doi: 10.1016/0021-9991(81)90052-8.  Google Scholar

[9]

E. Ezzoug, O. Goubet and E. Zahrouni, Semi-discrete weakly damped nonlinear 2-D Schroinger equation,, \emph{Differential Integral Equations}, 23 (2010), 237.   Google Scholar

[10]

J. M. Ghidaglia and R. Temam, Attractors for damped hyperbolic equations,, \emph{J. Math. Pures et Appli.}, 66 (1987), 273.   Google Scholar

[11]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations,, \emph{Applicable Anal.}, 60 (1996), 99.  doi: 10.1080/00036819608840420.  Google Scholar

[12]

O. Goubet and E. Zahrouni, On a time discretization of a weakly damped forced nonlinear Schrödinger equation,, \emph{Comm. in Pure and Applied Analysis}, 7 (2008), 1429.  doi: 10.3934/cpaa.2008.7.1429.  Google Scholar

[13]

B. Guo and Y. Li, Attractor for dissipative Klein-Gordon-Schrodinger equation in $R^3$,, \emph{J. Diff. Eq.}, 136 (1997), 356.  doi: 10.1006/jdeq.1996.3242.  Google Scholar

[14]

J. Hale, Asymptotic behavior of Dissipative Systems,, Math. surveys and Monographs, 25 (1988).   Google Scholar

[15]

A. Haraux, Two Remarks on Dissipative Hyperbolic Problems in nonlinear Partial Differential Equations and Their Applications, College de France Seminar, (1985).   Google Scholar

[16]

N. Karachalios, M. Stavrakakis and P. Xanthopoulos, Parametric exponential energy decay for dissipative electron-ion plasma waves,, \emph{Zeitschrift foangewandte Mathematik und Physik ZAMP}, (2005), 218.  doi: 10.1007/s00033-004-2095-2.  Google Scholar

[17]

O. Ladyzhenskaya, Attractors of Semigroups and Evolution Equations,, Cambridge University Press, (1991).  doi: 10.1017/CBO9780511569418.  Google Scholar

[18]

P. Laurençot, Long-time behaviour for weakly damped driven nonlinear Schroinger equations in $R^N$, $N\leq 3$,, \emph{NoDEA Nonlinear Differential Equations Appl.}, 2 (1995), 357.  doi: 10.1007/BF01261181.  Google Scholar

[19]

K. Lu and B. Wang, Global attractors for the Klein-Gordon-Schrödinger equation in unbounded domains,, \emph{J. Diff. Eq.}, (2001), 281.  doi: 10.1006/jdeq.2000.3827.  Google Scholar

[20]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,, Handbook of Differential Equations, ().  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[21]

I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,, \emph{Nonlinearity}, 11 (1998), 1369.  doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[22]

M. N. Poulou and N. M. Stavrakakis, Global Attractor for a Klein-Gordon-Schrödinger Type System in all $R$,, \emph{Nonlinear Analysis: Theory, (): 2548.  doi: 10.1016/j.na.2010.12.009.  Google Scholar

[23]

M. N. Poulou and N. B. Zographopoulos, Global Attractor for a degenerate Klein - Gordon - Schrödinger Type System,, submitted., ().   Google Scholar

[24]

G. Raugel, Global attractors in partial differential equations,, \emph{Handbook of dynamical systems}, (2002), 885.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[25]

C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse,, Applied Mathematical Sciences vol. 139, (1999).   Google Scholar

[26]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).   Google Scholar

[27]

B. Wang and H. Lange, Attractors for the Klein-Gordon-Schrödinger equation,, \emph{J. of Math. Phy.}, 40 (1999).  doi: 10.1063/1.532875.  Google Scholar

[28]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrodinger equations and its applications to their attractors,, \emph{Physica D}, 88 (1995), 167.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[29]

Y. Yan, Attractors and dimensions for discretizations of a weakly damped Schrödinger equations and a sine-Gordon equation,, \emph{Nonlinear Anal.}, 20 (1993), 1417.  doi: 10.1016/0362-546X(93)90168-R.  Google Scholar

[1]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[2]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[3]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[4]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[5]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[10]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[11]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[16]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[17]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[18]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[19]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[20]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]