July  2014, 13(4): 1541-1551. doi: 10.3934/cpaa.2014.13.1541

General decay estimates for a Cauchy viscoelastic wave problem

1. 

Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900

2. 

King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261

Received  August 2013 Revised  December 2013 Published  February 2014

In this paper, we consider the Cauchy problem of a viscoelatic wave equation and by using the energy method in the Fourier space, we show general decay estimates of the solution. This result improves and generalizes some other results in the literature.
Citation: Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541
References:
[1]

S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations, pages No. 88, 10 pp. (electronic), 2004.

[2]

S. Berrimi and S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonl. Anal., 64 (2006), 2314-2331. doi: 10.1016/j.na.2005.08.015.

[3]

E. L. Cabanillas and J. E. Mu noz Rivera, Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels, Comm. Math. Phys., 177 (1996), 583-602.

[4]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., 68 (2008), 177-193.

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, E. J. Differential Equations, 44 (2002), 1-14.

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma and J. A. Soriano, Global existence and asymptotic stability for viscoelastic problems, Differential Integral Equations, 15 (2002), 731-748.

[7]

M. Conti, S. Gatti and V. Pata, Decay rates of volterra equations on $\mathbbR^n$, Cent. Eur. J. Math., 5 (2007), 720-732. doi: 10.2478/s11533-007-0024-2.

[8]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[9]

C. M. Dafermos, On abstract volterra equations with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569.

[10]

G. Dassios and F. Zafiropoulos, Equipartition of energy in linearized $3$-d viscoelasticity, Quart. Appl. Math., 48 (1990), 715-730.

[11]

J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 693-698.

[12]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346-358. doi: 10.1002/mma.1041.

[13]

W. J. Hrusa, Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data, SIAM J. Math. Anal., 16 (1985), 110-134. doi: 10.1137/0516007.

[14]

R. Ikehata, Decay estimates by moments and masses of initial data for linear damped wave equations, Int. J. Pure Appl. Math., 5 (2003), 77-94.

[15]

W. Liu, General decay of solutions to a viscoelastic wave equation with nonlinear localized damping, Ann. Acad. Sci. Fenn. Math., 34 (2009), 291-302.

[16]

W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys., 50 (2009), 113506. doi: 10.1063/1.3254323.

[17]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinetic. Related. Models., 4 (2011), 531-547. doi: 10.3934/krm.2011.4.531.

[18]

S. A. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source, Nonl. Anal., 69 (2008), 2589-2598. doi: 10.1016/j.na.2007.08.035.

[19]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467.

[20]

S. A. Messaoudi and M. I. Mustafa, On the control of solutions of viscoelastic equations with boundary feedback, Nonlinear Anal. Real World Appl., 10 (2009), 3132-3140. doi: 10.1016/j.nonrwa.2008.10.026.

[21]

J. E. Mu noz Rivera and M. G. Naso, On the decay of the energy for systems with memory and indefinite dissipation, Asymptot. Anal., 49 (2006), 189-204.

[22]

J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping, J. Math. Phys., 50 (2009), 083505. doi: 10.1063/1.3187780.

[23]

R. Racke and B. Said-Houari, Decay rates for semilinear viscoelastic systems in weighted spaces, J. Hyperbolic Differ. Equ., 9 (2012), 67-103. doi: 10.1142/S0219891612500026.

[24]

R. Racke and B. Said-Houari, Decay rates and global existence for semilinear dissipative Timoshenko systems, Quart. Appl. Math., 72 (2013), 229-266. doi: 10.1090/S0033-569X-2012-01280-8.

[25]

J. E. Mu noz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.

[26]

J. E. Mu noz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.

[27]

J. E. Mu noz Rivera and A. Peres Salvatierra, Asymptotic behavior of the energy in partially viscoelastic materials, Quart. Appl. Math., 59 (2001), 557-578.

[28]

B. Said-Houari, Diffusion phenomenon for linear dissipative wave equations, Z. Anal. Anwend., 31 (2012), 267-282. doi: 10.4171/ZAA/1459.

[29]

J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation, PhD thesis, TU Bergakademie Freiberg, 2004.

show all references

References:
[1]

S. Berrimi and S. A. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations, pages No. 88, 10 pp. (electronic), 2004.

[2]

S. Berrimi and S. A. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonl. Anal., 64 (2006), 2314-2331. doi: 10.1016/j.na.2005.08.015.

[3]

E. L. Cabanillas and J. E. Mu noz Rivera, Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomial decaying kernels, Comm. Math. Phys., 177 (1996), 583-602.

[4]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., 68 (2008), 177-193.

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, E. J. Differential Equations, 44 (2002), 1-14.

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma and J. A. Soriano, Global existence and asymptotic stability for viscoelastic problems, Differential Integral Equations, 15 (2002), 731-748.

[7]

M. Conti, S. Gatti and V. Pata, Decay rates of volterra equations on $\mathbbR^n$, Cent. Eur. J. Math., 5 (2007), 720-732. doi: 10.2478/s11533-007-0024-2.

[8]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.

[9]

C. M. Dafermos, On abstract volterra equations with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569.

[10]

G. Dassios and F. Zafiropoulos, Equipartition of energy in linearized $3$-d viscoelasticity, Quart. Appl. Math., 48 (1990), 715-730.

[11]

J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 693-698.

[12]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci., 32 (2009), 346-358. doi: 10.1002/mma.1041.

[13]

W. J. Hrusa, Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data, SIAM J. Math. Anal., 16 (1985), 110-134. doi: 10.1137/0516007.

[14]

R. Ikehata, Decay estimates by moments and masses of initial data for linear damped wave equations, Int. J. Pure Appl. Math., 5 (2003), 77-94.

[15]

W. Liu, General decay of solutions to a viscoelastic wave equation with nonlinear localized damping, Ann. Acad. Sci. Fenn. Math., 34 (2009), 291-302.

[16]

W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys., 50 (2009), 113506. doi: 10.1063/1.3254323.

[17]

Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinetic. Related. Models., 4 (2011), 531-547. doi: 10.3934/krm.2011.4.531.

[18]

S. A. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source, Nonl. Anal., 69 (2008), 2589-2598. doi: 10.1016/j.na.2007.08.035.

[19]

S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl., 341 (2008), 1457-1467.

[20]

S. A. Messaoudi and M. I. Mustafa, On the control of solutions of viscoelastic equations with boundary feedback, Nonlinear Anal. Real World Appl., 10 (2009), 3132-3140. doi: 10.1016/j.nonrwa.2008.10.026.

[21]

J. E. Mu noz Rivera and M. G. Naso, On the decay of the energy for systems with memory and indefinite dissipation, Asymptot. Anal., 49 (2006), 189-204.

[22]

J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping, J. Math. Phys., 50 (2009), 083505. doi: 10.1063/1.3187780.

[23]

R. Racke and B. Said-Houari, Decay rates for semilinear viscoelastic systems in weighted spaces, J. Hyperbolic Differ. Equ., 9 (2012), 67-103. doi: 10.1142/S0219891612500026.

[24]

R. Racke and B. Said-Houari, Decay rates and global existence for semilinear dissipative Timoshenko systems, Quart. Appl. Math., 72 (2013), 229-266. doi: 10.1090/S0033-569X-2012-01280-8.

[25]

J. E. Mu noz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.

[26]

J. E. Mu noz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl., 286 (2003), 692-704.

[27]

J. E. Mu noz Rivera and A. Peres Salvatierra, Asymptotic behavior of the energy in partially viscoelastic materials, Quart. Appl. Math., 59 (2001), 557-578.

[28]

B. Said-Houari, Diffusion phenomenon for linear dissipative wave equations, Z. Anal. Anwend., 31 (2012), 267-282. doi: 10.4171/ZAA/1459.

[29]

J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation, PhD thesis, TU Bergakademie Freiberg, 2004.

[1]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021038

[2]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[3]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations and Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[4]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure and Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[6]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[7]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[8]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[9]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[10]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[11]

Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022009

[12]

Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 781-792. doi: 10.3934/eect.2021025

[13]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[14]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[15]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations and Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[16]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[17]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[18]

Abderrahmane Youkana, Salim A. Messaoudi. General and optimal decay for a quasilinear parabolic viscoelastic system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1307-1316. doi: 10.3934/dcdss.2021129

[19]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[20]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure and Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]