• Previous Article
    General decay estimates for a Cauchy viscoelastic wave problem
  • CPAA Home
  • This Issue
  • Next Article
    Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data
July  2014, 13(4): 1553-1561. doi: 10.3934/cpaa.2014.13.1553

Global existence of strong solutions to incompressible MHD

1. 

The Institute of Mathematical Sciences, University of Science and Technology of China, Anhui, 230026, China

2. 

The Institute of Mathematical Sciences, The Chinese University of Hong Kong

Received  September 2013 Revised  November 2013 Published  February 2014

We establish the global existence and uniqueness of strong solutions to the initial boundary value problem for the incompressible MHD equations in bounded smooth domains of $\mathbb R^3$ under some suitable smallness conditions. The initial density is allowed to have vacuum, in particular, it can vanish in a set of positive Lebessgue measure. More precisely, under the assumption that the production of the quantities $\|\sqrt\rho_0u_0\|_{L^2(\Omega)}^2+\|H_0\|_{L^2(\Omega)}^2$ and $\|\nabla u_0\|_{L^2(\Omega)}^2+\|\nabla H_0\|_{L^2(\Omega)}^2$ is suitably small, with the smallness depending only on the bound of the initial density and the domain, we prove that there is a unique strong solution to the Dirichlet problem of the incompressible MHD system.
Citation: Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1553-1561. doi: 10.3934/cpaa.2014.13.1553
References:
[1]

A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics,, Addison–Wesley, (1965). Google Scholar

[2]

L. D. Landau and E. M. Lifchitz, Electrodynamics of Continuous Media,, 2nd ed., (1984). Google Scholar

[3]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 635. doi: 10.1002/cpa.3160360506. Google Scholar

[4]

G. Duvaut and J. L. Lions, Inequations en thermoelasticite et magnetohydrodynamique,, \emph{Ach.Rational Mech. Anal.}, 46 (1972), 241. Google Scholar

[5]

J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation,, \emph{Adv. Differential Equations}, 2 (1997), 427. Google Scholar

[6]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1996). Google Scholar

[7]

P. L. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models,, Oxford Lecture Series in Mathematics and its Applications, (1998). Google Scholar

[8]

X. P. Hu and D. H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible Magnetohydrodynamic flows,, \emph{Arch. Rational Mech. Anal.}, 197 (2010), 203. doi: 10.1007/s00205-010-0295-9. Google Scholar

[9]

X. P. Hu and D. H. Wang, Global solutions to the three-dimensional full compressible Magnetohydrodynamic flows,, \emph{Commun. Math. Phys.}, 283 (2008), 255. doi: 10.1007/s00220-008-0497-2. Google Scholar

[10]

J. S. Fan and W. H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, \emph{Nonlinear Analysis}, 69 (2008), 3637. doi: 10.1016/j.na.2007.10.005. Google Scholar

[11]

E. Feireisl, Dynamics of viscous compressible fluids,, Oxford Lecture Series in Mathematics and its Applications, (2004). Google Scholar

[12]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, \emph{J. Math. Fluid Mech.}, 3 (2001), 358. doi: 10.1007/PL00000976. Google Scholar

[13]

B. Ducomet and E. Feireisl, The equation of Magnetohydrodynamics: on the interaction between matter and ration in the evolution of gaseous stars,, \emph{Commun. Math. Phys.}, 266 (2006), 595. doi: 10.1007/s00220-006-0052-y. Google Scholar

[14]

Q. Chen, Z. Tan and Y. J. Wang, Strong solutions to the incompressible magnetohydrodynamic equations,, \emph{Math. Methods Appl. Sci.}, 34 (2011), 94. doi: 10.1002/mma.1338. Google Scholar

[15]

H. W. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum,, \emph{Comput. Math. Appl.}, 61 (2011), 2742. doi: 10.1016/j.camwa.2011.03.033. Google Scholar

[16]

X. D. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, \emph{J. Differential Equations}, 254 (2013), 511. doi: 10.1016/j.jde.2012.08.029. Google Scholar

[17]

J. S. Fan and W. H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum,, Nonlinear Anal. Real World Appl., 10 (2009), 392. doi: 10.1016/j.nonrwa.2007.10.001. Google Scholar

[18]

X. L. Li, N. Su, and D. H. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data,, \emph{J. Hyperbolic Differ. Equ.}, 8 (2011), 415. doi: 10.1142/S0219891611002457. Google Scholar

[19]

X. L. Li and D. H. Wang, Global strong solution to the three-dimensional density-dependent incompressible magnetohydrodynamic flows,, \emph{J. Differential Equations}, 251 (2011), 1580. doi: 10.1016/j.jde.2011.06.004. Google Scholar

[20]

W. Von Wahl, Estimating $\nabla u$ by $\text{div} u$ and $\text{curl}u$,, \emph{Math. Methods Appl. Sci.}, 15 (1992), 123. doi: 10.1002/mma.1670150206. Google Scholar

[21]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, \emph{Discrete Contin. Dyn. Syst.}, 12 (2005), 881. doi: 10.3934/dcds.2005.12.881. Google Scholar

[22]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure,, \emph{Internat. J. Non-Linear Mech.}, 41 (2006), 1174. doi: 10.1016/j.ijnonlinmec.2006.12.001. Google Scholar

[23]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 24 (2007), 491. doi: 10.1016/j.anihpc.2006.03.014. Google Scholar

show all references

References:
[1]

A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics,, Addison–Wesley, (1965). Google Scholar

[2]

L. D. Landau and E. M. Lifchitz, Electrodynamics of Continuous Media,, 2nd ed., (1984). Google Scholar

[3]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations,, \emph{Comm. Pure Appl. Math.}, 36 (1983), 635. doi: 10.1002/cpa.3160360506. Google Scholar

[4]

G. Duvaut and J. L. Lions, Inequations en thermoelasticite et magnetohydrodynamique,, \emph{Ach.Rational Mech. Anal.}, 46 (1972), 241. Google Scholar

[5]

J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation,, \emph{Adv. Differential Equations}, 2 (1997), 427. Google Scholar

[6]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1996). Google Scholar

[7]

P. L. Lions, Mathematical topics in fluid mechanics. Vol. 2. Compressible models,, Oxford Lecture Series in Mathematics and its Applications, (1998). Google Scholar

[8]

X. P. Hu and D. H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible Magnetohydrodynamic flows,, \emph{Arch. Rational Mech. Anal.}, 197 (2010), 203. doi: 10.1007/s00205-010-0295-9. Google Scholar

[9]

X. P. Hu and D. H. Wang, Global solutions to the three-dimensional full compressible Magnetohydrodynamic flows,, \emph{Commun. Math. Phys.}, 283 (2008), 255. doi: 10.1007/s00220-008-0497-2. Google Scholar

[10]

J. S. Fan and W. H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, \emph{Nonlinear Analysis}, 69 (2008), 3637. doi: 10.1016/j.na.2007.10.005. Google Scholar

[11]

E. Feireisl, Dynamics of viscous compressible fluids,, Oxford Lecture Series in Mathematics and its Applications, (2004). Google Scholar

[12]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, \emph{J. Math. Fluid Mech.}, 3 (2001), 358. doi: 10.1007/PL00000976. Google Scholar

[13]

B. Ducomet and E. Feireisl, The equation of Magnetohydrodynamics: on the interaction between matter and ration in the evolution of gaseous stars,, \emph{Commun. Math. Phys.}, 266 (2006), 595. doi: 10.1007/s00220-006-0052-y. Google Scholar

[14]

Q. Chen, Z. Tan and Y. J. Wang, Strong solutions to the incompressible magnetohydrodynamic equations,, \emph{Math. Methods Appl. Sci.}, 34 (2011), 94. doi: 10.1002/mma.1338. Google Scholar

[15]

H. W. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum,, \emph{Comput. Math. Appl.}, 61 (2011), 2742. doi: 10.1016/j.camwa.2011.03.033. Google Scholar

[16]

X. D. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, \emph{J. Differential Equations}, 254 (2013), 511. doi: 10.1016/j.jde.2012.08.029. Google Scholar

[17]

J. S. Fan and W. H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum,, Nonlinear Anal. Real World Appl., 10 (2009), 392. doi: 10.1016/j.nonrwa.2007.10.001. Google Scholar

[18]

X. L. Li, N. Su, and D. H. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data,, \emph{J. Hyperbolic Differ. Equ.}, 8 (2011), 415. doi: 10.1142/S0219891611002457. Google Scholar

[19]

X. L. Li and D. H. Wang, Global strong solution to the three-dimensional density-dependent incompressible magnetohydrodynamic flows,, \emph{J. Differential Equations}, 251 (2011), 1580. doi: 10.1016/j.jde.2011.06.004. Google Scholar

[20]

W. Von Wahl, Estimating $\nabla u$ by $\text{div} u$ and $\text{curl}u$,, \emph{Math. Methods Appl. Sci.}, 15 (1992), 123. doi: 10.1002/mma.1670150206. Google Scholar

[21]

Y. Zhou, Remarks on regularities for the 3D MHD equations,, \emph{Discrete Contin. Dyn. Syst.}, 12 (2005), 881. doi: 10.3934/dcds.2005.12.881. Google Scholar

[22]

Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure,, \emph{Internat. J. Non-Linear Mech.}, 41 (2006), 1174. doi: 10.1016/j.ijnonlinmec.2006.12.001. Google Scholar

[23]

Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, \emph{Ann. Inst. H. Poincaré Anal. Non Linéaire}, 24 (2007), 491. doi: 10.1016/j.anihpc.2006.03.014. Google Scholar

[1]

Huajun Gong, Jinkai Li. Global existence of strong solutions to incompressible MHD. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1337-1345. doi: 10.3934/cpaa.2014.13.1337

[2]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

[3]

Yu-Zhu Wang, Yin-Xia Wang. Local existence of strong solutions to the three dimensional compressible MHD equations with partial viscosity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 851-866. doi: 10.3934/cpaa.2013.12.851

[4]

Zhuan Ye. Remark on exponential decay-in-time of global strong solutions to 3D inhomogeneous incompressible micropolar equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019164

[5]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[6]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[7]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[8]

Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763

[9]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[10]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[11]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[12]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[13]

Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic & Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002

[14]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[15]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[16]

Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437

[17]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025

[18]

F. R. Guarguaglini, R. Natalini. Global existence and uniqueness of solutions for multidimensional weakly parabolic systems arising in chemistry and biology. Communications on Pure & Applied Analysis, 2007, 6 (1) : 287-309. doi: 10.3934/cpaa.2007.6.287

[19]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[20]

Jan Giesselmann, Niklas Kolbe, Mária Lukáčová-Medvi${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over d} }}$ová, Nikolaos Sfakianakis. Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4397-4431. doi: 10.3934/dcdsb.2018169

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]