-
Previous Article
Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions
- CPAA Home
- This Issue
-
Next Article
Global existence of strong solutions to incompressible MHD
Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data
1. | Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan |
References:
[1] |
I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part I, Int. Math. Res. Pap., 2006 (2006), 84pp. |
[2] |
I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part II, Trans. Amer. Math. Soc., 360 (2008), 5925-5957.
doi: 10.1090/S0002-9947-08-04471-1. |
[3] |
H. Chihara, Local existence for semilinear Schrödinger equations, Math. Japon., 42 (1995), 35-51. |
[4] |
H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann., 315 (1999), 529-567.
doi: 10.1007/s002080050328. |
[5] |
M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint, Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1363. |
[6] |
M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations., 17 (2004), 297-330. |
[7] |
M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Nonlin\éaire., 26 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011. |
[8] |
M. Colin, T. Colin and M. Ohta, Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction, Funkcialaj Ekvacioj., 52 (2009), 371-380.
doi: 10.1619/fesi.52.371. |
[9] |
M. Colin and M. Ohta, Bifurcation from semitrivial standing waves and ground states for a system of nonlinear Schrödinger equations, SIAM J. Math. Anal., 44 (2012), 206-223.
doi: 10.1137/110823808. |
[10] |
J. Colliander, J. Delort, C. Kenig, and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325.
doi: 10.1090/S0002-9947-01-02760-X. |
[11] |
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[12] |
A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, preprint, arXiv:math/0006195v1. |
[13] |
M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non linéaie., 26 (2009), 917-941.
doi: 10.1016/j.anihpc.2008.04.002. |
[14] |
M. Hadac, S. Herr and H. Koch, Errantum to "Well-posedness and scattering for the KP-II equation in a critical space'' [Ann. I. H. Poincaré-AN26 (3) (2009) 917-941], Ann. Inst. H. Poincaré Anal. Non linéaie., 27 (2010), 971-972.
doi: 10.1016/j.anihpc.2010.01.006. |
[15] |
N. Hayashi, C. Li and P. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differential Integral Equations., 24 (2011), 417-434. |
[16] |
N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.
doi: 10.7153/dea-03-26. |
[17] |
S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^{1}(T^{3})$, Duke. Math. J., 159 (2011), 329-349.
doi: 10.1215/00127094-1415889. |
[18] |
A. Ionescu and C. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc., 20 (2007), 753-798.
doi: 10.1090/S0894-0347-06-00551-0. |
[19] |
M. Ikeda, S. Katayama and H. Sunagawa, Null structure in a system of quadratic derivative nonlinear Schrödinger equations, preprint, arXiv:1305.3662v1. |
[20] |
C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[21] |
C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134 (1998), 489-545.
doi: 10.1007/s002220050272. |
[22] |
H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., 2005 (2005), 1833-1847.
doi: 10.1155/IMRN.2005.1833. |
[23] |
S. Mizohata, On the Cauchy Problem, Notes and Reports in Mathematics in Science and Engineering, Science Press & Academic Press., 3 (1985), 177pp. |
[24] |
L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307. |
[25] |
T. Ozawa and H. Sunagawa, Small data blow-up for a system of nonlinear Schrodinger equations, J. Math. Anal. Appl., 399 (2013), 147-155.
doi: 10.1016/j.jmaa.2012.10.003. |
[26] |
T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations, preprint, arXiv:1209.1518v2. |
[27] |
A. Stefanov, On quadratic derivative Schrödinger equations in one space dimension, Trans. Amer. Math. Soc., 359 (2007), 3589-3607.
doi: 10.1090/S0002-9947-07-04207-9. |
[28] |
T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^{1}(\R )$, J. Hyperbolic Differ. Equ., 1 (2004), 27-49.
doi: 10.1142/S0219891604000032. |
show all references
References:
[1] |
I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part I, Int. Math. Res. Pap., 2006 (2006), 84pp. |
[2] |
I. Bejenaru, Quadratic nonlinear derivative Schrödinger equations. Part II, Trans. Amer. Math. Soc., 360 (2008), 5925-5957.
doi: 10.1090/S0002-9947-08-04471-1. |
[3] |
H. Chihara, Local existence for semilinear Schrödinger equations, Math. Japon., 42 (1995), 35-51. |
[4] |
H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann., 315 (1999), 529-567.
doi: 10.1007/s002080050328. |
[5] |
M. Christ, Illposedness of a Schrödinger equation with derivative nonlinearity, preprint, Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.1363. |
[6] |
M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations., 17 (2004), 297-330. |
[7] |
M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Nonlin\éaire., 26 (2009), 2211-2226.
doi: 10.1016/j.anihpc.2009.01.011. |
[8] |
M. Colin, T. Colin and M. Ohta, Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction, Funkcialaj Ekvacioj., 52 (2009), 371-380.
doi: 10.1619/fesi.52.371. |
[9] |
M. Colin and M. Ohta, Bifurcation from semitrivial standing waves and ground states for a system of nonlinear Schrödinger equations, SIAM J. Math. Anal., 44 (2012), 206-223.
doi: 10.1137/110823808. |
[10] |
J. Colliander, J. Delort, C. Kenig, and G. Staffilani, Bilinear estimates and applications to 2D NLS, Trans. Amer. Math. Soc., 353 (2001), 3307-3325.
doi: 10.1090/S0002-9947-01-02760-X. |
[11] |
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148. |
[12] |
A. Grünrock, On the Cauchy - and periodic boundary value problem for a certain class of derivative nonlinear Schrödinger equations, preprint, arXiv:math/0006195v1. |
[13] |
M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non linéaie., 26 (2009), 917-941.
doi: 10.1016/j.anihpc.2008.04.002. |
[14] |
M. Hadac, S. Herr and H. Koch, Errantum to "Well-posedness and scattering for the KP-II equation in a critical space'' [Ann. I. H. Poincaré-AN26 (3) (2009) 917-941], Ann. Inst. H. Poincaré Anal. Non linéaie., 27 (2010), 971-972.
doi: 10.1016/j.anihpc.2010.01.006. |
[15] |
N. Hayashi, C. Li and P. Naumkin, On a system of nonlinear Schrödinger equations in 2D, Differential Integral Equations., 24 (2011), 417-434. |
[16] |
N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differ. Equ. Appl., 3 (2011), 415-426.
doi: 10.7153/dea-03-26. |
[17] |
S. Herr, D. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^{1}(T^{3})$, Duke. Math. J., 159 (2011), 329-349.
doi: 10.1215/00127094-1415889. |
[18] |
A. Ionescu and C. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc., 20 (2007), 753-798.
doi: 10.1090/S0894-0347-06-00551-0. |
[19] |
M. Ikeda, S. Katayama and H. Sunagawa, Null structure in a system of quadratic derivative nonlinear Schrödinger equations, preprint, arXiv:1305.3662v1. |
[20] |
C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7. |
[21] |
C. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math., 134 (1998), 489-545.
doi: 10.1007/s002220050272. |
[22] |
H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., 2005 (2005), 1833-1847.
doi: 10.1155/IMRN.2005.1833. |
[23] |
S. Mizohata, On the Cauchy Problem, Notes and Reports in Mathematics in Science and Engineering, Science Press & Academic Press., 3 (1985), 177pp. |
[24] |
L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307. |
[25] |
T. Ozawa and H. Sunagawa, Small data blow-up for a system of nonlinear Schrodinger equations, J. Math. Anal. Appl., 399 (2013), 147-155.
doi: 10.1016/j.jmaa.2012.10.003. |
[26] |
T. Schottdorf, Global existence without decay for quadratic Klein-Gordon equations, preprint, arXiv:1209.1518v2. |
[27] |
A. Stefanov, On quadratic derivative Schrödinger equations in one space dimension, Trans. Amer. Math. Soc., 359 (2007), 3589-3607.
doi: 10.1090/S0002-9947-07-04207-9. |
[28] |
T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^{1}(\R )$, J. Hyperbolic Differ. Equ., 1 (2004), 27-49.
doi: 10.1142/S0219891604000032. |
[1] |
Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032 |
[2] |
Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027 |
[3] |
Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123 |
[4] |
Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831 |
[5] |
Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387 |
[6] |
Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095 |
[7] |
Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181 |
[8] |
Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097 |
[9] |
Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023 |
[10] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[11] |
Belkacem Said-Houari. Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation with arbitrarily large higher-order Sobolev norms. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022066 |
[12] |
Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082 |
[13] |
Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114 |
[14] |
Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061 |
[15] |
Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036 |
[16] |
Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371 |
[17] |
Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389 |
[18] |
Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations and Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15 |
[19] |
Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315 |
[20] |
Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]