Advanced Search
Article Contents
Article Contents

Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions

Abstract Related Papers Cited by
  • In this paper, we study semilinear elliptic equations with nonlinear Neumann boundary conditions. We prove the existence of a sequence of solutions converging to zero if the nonlinear term is locally sublinear and the existence of a sequence of solutions diverging to infinity if the nonlinear term is locally superlinear.
    Mathematics Subject Classification: Primary: 35J20; Secondary: 35J25, 35J66.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.


    A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.


    T. Bartsch and M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555-3561.doi: 10.2307/2161107.


    D. C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J., 22 (1972), 65-74.


    D. G. DeFigueiredo, J.-P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.doi: 10.1016/S0022-1236(02)00060-5.


    D. G. DeFigueiredo, J.-P. Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc., 8 (2006), 269-288.doi: 10.4171/JEMS/52.


    J. Garcia-Azorero, I. Peral and J. D. Rossi, A convex-concave problem with a nonlinear boundary condition, J. Differential Equations, 198 (2004), 91-128.doi: 10.1016/S0022-0396(03)00068-8.


    R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.doi: 10.1016/j.jfa.2005.04.005.


    R. Kajikiya, Superlinear elliptic equations with singular coefficients on the boundary, Nonlinear Analysis, T.M.A., 73 (2010), 2117-2131.doi: 10.1016/j.na.2010.05.039.


    O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, translated by Scripta Technica, Inc. Mathematics in Science and Engineering, Vol. 46, Academic Press, 1968.


    D. Naimen, Existence of infinitely many solutions for nonlinear Neumann problems with indefinite coefficients, Submitted for publications.


    P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics Vol. 65, American Mathematical Society, Providence, RI, 1986.


    M. Struwe, Variational Methods, 2nd edition, Springer, Berlin, 1996.


    Z.-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, Nonlinear Differential Equations Appl., 8 (2001), 15-33.doi: 10.1007/PL00001436.

  • 加载中

Article Metrics

HTML views() PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint