• Previous Article
    Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity
  • CPAA Home
  • This Issue
  • Next Article
    The classification of constant weighted curvature curves in the plane with a log-linear density
July  2014, 13(4): 1629-1639. doi: 10.3934/cpaa.2014.13.1629

Note on evolutionary free piston problem for Stokes equations with slip boundary conditions

1. 

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

2. 

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Received  April 2012 Revised  October 2012 Published  February 2014

In this paper we study a free boundary fluid-rigid body interaction problem, the free piston problem. We consider an evolutionary incompressible viscous fluid flow through a junction of two pipes. Inside the "vertical" pipe there is a heavy piston which can freely slide along the pipe. On the lateral boundary of the "vertical" pipe we prescribe Navier's slip boundary conditions. We prove the existence of a local in time weak solution. Furthermore, we show that the obtained solution is a strong solution.
Citation: Boris Muha, Zvonimir Tutek. Note on evolutionary free piston problem for Stokes equations with slip boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1629-1639. doi: 10.3934/cpaa.2014.13.1629
References:
[1]

A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, \emph{J. Math. Fluid Mech.}, 7 (2005), 368. doi: 10.1007/s00021-004-0121-y. Google Scholar

[2]

C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure,, \emph{Japan. J. Math. (N.S.)}, 20 (1994), 279. Google Scholar

[3]

C. Conca, J. San Martín H. and M. Tucsnak, Motion of a rigid body in a viscous fluid,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 328 (1999), 473. doi: 10.1016/S0764-4442(99)80193-1. Google Scholar

[4]

P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid,, \emph{Czechoslovak Math. J.}, 58 (2008), 961. doi: 10.1007/s10587-008-0063-2. Google Scholar

[5]

B. D'Acunto and S. Rionero, A note on the existence and uniqueness of solutions to a free piston problem,, \emph{Rend. Accad. Sci. Fis. Mat. Napoli}, 66 (1999), 75. Google Scholar

[6]

B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models,, \emph{Comm. Partial Differential Equations}, 25 (2000), 1399. doi: 10.1080/03605300008821553. Google Scholar

[7]

G. P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics,, in \emph{Hemodynamical Flows}, (2008), 121. doi: 10.1007/978-3-7643-7806-6_3. Google Scholar

[8]

M. Hillairet and D. Serre, Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 20 (2003), 779. doi: 10.1016/S0294-1449(02)00028-8. Google Scholar

[9]

M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems,, \emph{SIAM J. Math. Anal.}, 40 (2009), 2451. doi: 10.1137/080716074. Google Scholar

[10]

E. Marušić-Paloka., Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid,, \emph{Asymptot. Anal.}, 33 (2003), 51. Google Scholar

[11]

V. Maz'ya and J. Rossmann, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains,, \emph{Math. Nachr.}, 280 (2007), 751. doi: 10.1002/mana.200610513. Google Scholar

[12]

T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain,, \emph{Hiroshima Math. J.}, 12 (1982), 513. Google Scholar

[13]

B. Muha and Z. Tutek, On a free piston problem for Stokes and Navier-Stokes equations,, To appear in \emph{Glasnik Matemati\v cki}., (). Google Scholar

[14]

B. Muha and Z. Tutek, Numerical analysis of a free piston problem,, \emph{Math. Commun.}, 15 (2010), 573. Google Scholar

[15]

B. Muha and Z. Tutek, On a stationary and evolutionary free piston problem for potential ideal fluid flow,, \emph{Math. Meth. Appl. Sci.}, 35 (2012), 1721. doi: 10.1002/mma.2555. Google Scholar

[16]

J. Neustupa and P. Penel, A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall,, in \emph{Advances in Mathematical Fluid Mechanics}, (2010), 385. doi: 10.1007/978-3-642-04068-9_24. Google Scholar

[17]

V. G. Osmolovskiĭ, Linear and Nonlinear Perturbations of the Operator div, volume 160 of "Translations of Mathematical Monographs,", American Mathematical Society, (1997). Google Scholar

[18]

S. Takeno, Free piston problem for isentropic gas dynamics,, \emph{Japan J. Indust. Appl. Math.}, 12 (1995), 163. doi: 10.1007/BF03167287. Google Scholar

[19]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland Publishing Co., (1977). Google Scholar

show all references

References:
[1]

A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, \emph{J. Math. Fluid Mech.}, 7 (2005), 368. doi: 10.1007/s00021-004-0121-y. Google Scholar

[2]

C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure,, \emph{Japan. J. Math. (N.S.)}, 20 (1994), 279. Google Scholar

[3]

C. Conca, J. San Martín H. and M. Tucsnak, Motion of a rigid body in a viscous fluid,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 328 (1999), 473. doi: 10.1016/S0764-4442(99)80193-1. Google Scholar

[4]

P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid,, \emph{Czechoslovak Math. J.}, 58 (2008), 961. doi: 10.1007/s10587-008-0063-2. Google Scholar

[5]

B. D'Acunto and S. Rionero, A note on the existence and uniqueness of solutions to a free piston problem,, \emph{Rend. Accad. Sci. Fis. Mat. Napoli}, 66 (1999), 75. Google Scholar

[6]

B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models,, \emph{Comm. Partial Differential Equations}, 25 (2000), 1399. doi: 10.1080/03605300008821553. Google Scholar

[7]

G. P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics,, in \emph{Hemodynamical Flows}, (2008), 121. doi: 10.1007/978-3-7643-7806-6_3. Google Scholar

[8]

M. Hillairet and D. Serre, Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 20 (2003), 779. doi: 10.1016/S0294-1449(02)00028-8. Google Scholar

[9]

M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems,, \emph{SIAM J. Math. Anal.}, 40 (2009), 2451. doi: 10.1137/080716074. Google Scholar

[10]

E. Marušić-Paloka., Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid,, \emph{Asymptot. Anal.}, 33 (2003), 51. Google Scholar

[11]

V. Maz'ya and J. Rossmann, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains,, \emph{Math. Nachr.}, 280 (2007), 751. doi: 10.1002/mana.200610513. Google Scholar

[12]

T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain,, \emph{Hiroshima Math. J.}, 12 (1982), 513. Google Scholar

[13]

B. Muha and Z. Tutek, On a free piston problem for Stokes and Navier-Stokes equations,, To appear in \emph{Glasnik Matemati\v cki}., (). Google Scholar

[14]

B. Muha and Z. Tutek, Numerical analysis of a free piston problem,, \emph{Math. Commun.}, 15 (2010), 573. Google Scholar

[15]

B. Muha and Z. Tutek, On a stationary and evolutionary free piston problem for potential ideal fluid flow,, \emph{Math. Meth. Appl. Sci.}, 35 (2012), 1721. doi: 10.1002/mma.2555. Google Scholar

[16]

J. Neustupa and P. Penel, A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall,, in \emph{Advances in Mathematical Fluid Mechanics}, (2010), 385. doi: 10.1007/978-3-642-04068-9_24. Google Scholar

[17]

V. G. Osmolovskiĭ, Linear and Nonlinear Perturbations of the Operator div, volume 160 of "Translations of Mathematical Monographs,", American Mathematical Society, (1997). Google Scholar

[18]

S. Takeno, Free piston problem for isentropic gas dynamics,, \emph{Japan J. Indust. Appl. Math.}, 12 (1995), 163. doi: 10.1007/BF03167287. Google Scholar

[19]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland Publishing Co., (1977). Google Scholar

[1]

Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations & Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69

[2]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[3]

Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511

[4]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[5]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[6]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[7]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[8]

Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539

[9]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[10]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[11]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[12]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[13]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[14]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[15]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[16]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[17]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[18]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[19]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[20]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]