-
Previous Article
The classification of constant weighted curvature curves in the plane with a log-linear density
- CPAA Home
- This Issue
-
Next Article
Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity
Note on evolutionary free piston problem for Stokes equations with slip boundary conditions
1. | Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia |
2. | Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia |
References:
[1] |
A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, \emph{J. Math. Fluid Mech.}, 7 (2005), 368.
doi: 10.1007/s00021-004-0121-y. |
[2] |
C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure,, \emph{Japan. J. Math. (N.S.)}, 20 (1994), 279.
|
[3] |
C. Conca, J. San Martín H. and M. Tucsnak, Motion of a rigid body in a viscous fluid,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 328 (1999), 473.
doi: 10.1016/S0764-4442(99)80193-1. |
[4] |
P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid,, \emph{Czechoslovak Math. J.}, 58 (2008), 961.
doi: 10.1007/s10587-008-0063-2. |
[5] |
B. D'Acunto and S. Rionero, A note on the existence and uniqueness of solutions to a free piston problem,, \emph{Rend. Accad. Sci. Fis. Mat. Napoli}, 66 (1999), 75.
|
[6] |
B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models,, \emph{Comm. Partial Differential Equations}, 25 (2000), 1399.
doi: 10.1080/03605300008821553. |
[7] |
G. P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics,, in \emph{Hemodynamical Flows}, (2008), 121.
doi: 10.1007/978-3-7643-7806-6_3. |
[8] |
M. Hillairet and D. Serre, Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 20 (2003), 779.
doi: 10.1016/S0294-1449(02)00028-8. |
[9] |
M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems,, \emph{SIAM J. Math. Anal.}, 40 (2009), 2451.
doi: 10.1137/080716074. |
[10] |
E. Marušić-Paloka., Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid,, \emph{Asymptot. Anal.}, 33 (2003), 51.
|
[11] |
V. Maz'ya and J. Rossmann, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains,, \emph{Math. Nachr.}, 280 (2007), 751.
doi: 10.1002/mana.200610513. |
[12] |
T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain,, \emph{Hiroshima Math. J.}, 12 (1982), 513.
|
[13] |
B. Muha and Z. Tutek, On a free piston problem for Stokes and Navier-Stokes equations,, To appear in \emph{Glasnik Matemati\v cki}., (). Google Scholar |
[14] |
B. Muha and Z. Tutek, Numerical analysis of a free piston problem,, \emph{Math. Commun.}, 15 (2010), 573.
|
[15] |
B. Muha and Z. Tutek, On a stationary and evolutionary free piston problem for potential ideal fluid flow,, \emph{Math. Meth. Appl. Sci.}, 35 (2012), 1721.
doi: 10.1002/mma.2555. |
[16] |
J. Neustupa and P. Penel, A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall,, in \emph{Advances in Mathematical Fluid Mechanics}, (2010), 385.
doi: 10.1007/978-3-642-04068-9_24. |
[17] |
V. G. Osmolovskiĭ, Linear and Nonlinear Perturbations of the Operator div, volume 160 of "Translations of Mathematical Monographs,", American Mathematical Society, (1997).
|
[18] |
S. Takeno, Free piston problem for isentropic gas dynamics,, \emph{Japan J. Indust. Appl. Math.}, 12 (1995), 163.
doi: 10.1007/BF03167287. |
[19] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland Publishing Co., (1977).
|
show all references
References:
[1] |
A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, \emph{J. Math. Fluid Mech.}, 7 (2005), 368.
doi: 10.1007/s00021-004-0121-y. |
[2] |
C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure,, \emph{Japan. J. Math. (N.S.)}, 20 (1994), 279.
|
[3] |
C. Conca, J. San Martín H. and M. Tucsnak, Motion of a rigid body in a viscous fluid,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 328 (1999), 473.
doi: 10.1016/S0764-4442(99)80193-1. |
[4] |
P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid,, \emph{Czechoslovak Math. J.}, 58 (2008), 961.
doi: 10.1007/s10587-008-0063-2. |
[5] |
B. D'Acunto and S. Rionero, A note on the existence and uniqueness of solutions to a free piston problem,, \emph{Rend. Accad. Sci. Fis. Mat. Napoli}, 66 (1999), 75.
|
[6] |
B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models,, \emph{Comm. Partial Differential Equations}, 25 (2000), 1399.
doi: 10.1080/03605300008821553. |
[7] |
G. P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics,, in \emph{Hemodynamical Flows}, (2008), 121.
doi: 10.1007/978-3-7643-7806-6_3. |
[8] |
M. Hillairet and D. Serre, Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 20 (2003), 779.
doi: 10.1016/S0294-1449(02)00028-8. |
[9] |
M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems,, \emph{SIAM J. Math. Anal.}, 40 (2009), 2451.
doi: 10.1137/080716074. |
[10] |
E. Marušić-Paloka., Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid,, \emph{Asymptot. Anal.}, 33 (2003), 51.
|
[11] |
V. Maz'ya and J. Rossmann, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains,, \emph{Math. Nachr.}, 280 (2007), 751.
doi: 10.1002/mana.200610513. |
[12] |
T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain,, \emph{Hiroshima Math. J.}, 12 (1982), 513.
|
[13] |
B. Muha and Z. Tutek, On a free piston problem for Stokes and Navier-Stokes equations,, To appear in \emph{Glasnik Matemati\v cki}., (). Google Scholar |
[14] |
B. Muha and Z. Tutek, Numerical analysis of a free piston problem,, \emph{Math. Commun.}, 15 (2010), 573.
|
[15] |
B. Muha and Z. Tutek, On a stationary and evolutionary free piston problem for potential ideal fluid flow,, \emph{Math. Meth. Appl. Sci.}, 35 (2012), 1721.
doi: 10.1002/mma.2555. |
[16] |
J. Neustupa and P. Penel, A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall,, in \emph{Advances in Mathematical Fluid Mechanics}, (2010), 385.
doi: 10.1007/978-3-642-04068-9_24. |
[17] |
V. G. Osmolovskiĭ, Linear and Nonlinear Perturbations of the Operator div, volume 160 of "Translations of Mathematical Monographs,", American Mathematical Society, (1997).
|
[18] |
S. Takeno, Free piston problem for isentropic gas dynamics,, \emph{Japan J. Indust. Appl. Math.}, 12 (1995), 163.
doi: 10.1007/BF03167287. |
[19] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland Publishing Co., (1977).
|
[1] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[2] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[3] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[4] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[5] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[6] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[7] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[8] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[9] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[10] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[11] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[12] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[13] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[14] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[15] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[16] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[17] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[18] |
Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229 |
[19] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed bvp for the variable-viscosity compressible stokes pdes. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021009 |
[20] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]