-
Previous Article
The classification of constant weighted curvature curves in the plane with a log-linear density
- CPAA Home
- This Issue
-
Next Article
Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity
Note on evolutionary free piston problem for Stokes equations with slip boundary conditions
1. | Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia |
2. | Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia |
References:
[1] |
A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404.
doi: 10.1007/s00021-004-0121-y. |
[2] |
C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Japan. J. Math. (N.S.), 20 (1994), 279-318. |
[3] |
C. Conca, J. San Martín H. and M. Tucsnak, Motion of a rigid body in a viscous fluid, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 473-478.
doi: 10.1016/S0764-4442(99)80193-1. |
[4] |
P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslovak Math. J., 58 (2008), 961-992.
doi: 10.1007/s10587-008-0063-2. |
[5] |
B. D'Acunto and S. Rionero, A note on the existence and uniqueness of solutions to a free piston problem, Rend. Accad. Sci. Fis. Mat. Napoli, 66 (1999), 75-84. |
[6] |
B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations, 25 (2000), 1399-1413.
doi: 10.1080/03605300008821553. |
[7] |
G. P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics, in Hemodynamical Flows, volume 37 of Oberwolfach Semin., pages 121-273. Birkhäuser, Basel, 2008.
doi: 10.1007/978-3-7643-7806-6_3. |
[8] |
M. Hillairet and D. Serre, Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 779-803.
doi: 10.1016/S0294-1449(02)00028-8. |
[9] |
M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., 40 (2009), 2451-2477.
doi: 10.1137/080716074. |
[10] |
E. Marušić-Paloka., Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid, Asymptot. Anal., 33 (2003), 51-66. |
[11] |
V. Maz'ya and J. Rossmann, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains, Math. Nachr., 280 (2007), 751-793.
doi: 10.1002/mana.200610513. |
[12] |
T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain, Hiroshima Math. J., 12 (1982), 513-528. |
[13] |
B. Muha and Z. Tutek, On a free piston problem for Stokes and Navier-Stokes equations,, To appear in \emph{Glasnik Matemati\v cki}., ().
|
[14] |
B. Muha and Z. Tutek, Numerical analysis of a free piston problem, Math. Commun., 15 (2010), 573-585. |
[15] |
B. Muha and Z. Tutek, On a stationary and evolutionary free piston problem for potential ideal fluid flow, Math. Meth. Appl. Sci., 35 (2012), 1721-1736, DOI:10.1002/mma.2555.
doi: 10.1002/mma.2555. |
[16] |
J. Neustupa and P. Penel, A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall, in Advances in Mathematical Fluid Mechanics, pages 385-407. Springer, Berlin, 2010.
doi: 10.1007/978-3-642-04068-9_24. |
[17] |
V. G. Osmolovskiĭ, Linear and Nonlinear Perturbations of the Operator div, volume 160 of "Translations of Mathematical Monographs," American Mathematical Society, Providence, RI, 1997, Translated from the 1995 Russian original by Tamara Rozhkovskaya. |
[18] |
S. Takeno, Free piston problem for isentropic gas dynamics, Japan J. Indust. Appl. Math., 12 (1995), 163-194.
doi: 10.1007/BF03167287. |
[19] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam, 1977. Studies in Mathematics and its Applications, Vol. 2. |
show all references
References:
[1] |
A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404.
doi: 10.1007/s00021-004-0121-y. |
[2] |
C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Japan. J. Math. (N.S.), 20 (1994), 279-318. |
[3] |
C. Conca, J. San Martín H. and M. Tucsnak, Motion of a rigid body in a viscous fluid, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 473-478.
doi: 10.1016/S0764-4442(99)80193-1. |
[4] |
P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid, Czechoslovak Math. J., 58 (2008), 961-992.
doi: 10.1007/s10587-008-0063-2. |
[5] |
B. D'Acunto and S. Rionero, A note on the existence and uniqueness of solutions to a free piston problem, Rend. Accad. Sci. Fis. Mat. Napoli, 66 (1999), 75-84. |
[6] |
B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations, 25 (2000), 1399-1413.
doi: 10.1080/03605300008821553. |
[7] |
G. P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics, in Hemodynamical Flows, volume 37 of Oberwolfach Semin., pages 121-273. Birkhäuser, Basel, 2008.
doi: 10.1007/978-3-7643-7806-6_3. |
[8] |
M. Hillairet and D. Serre, Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 779-803.
doi: 10.1016/S0294-1449(02)00028-8. |
[9] |
M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., 40 (2009), 2451-2477.
doi: 10.1137/080716074. |
[10] |
E. Marušić-Paloka., Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid, Asymptot. Anal., 33 (2003), 51-66. |
[11] |
V. Maz'ya and J. Rossmann, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains, Math. Nachr., 280 (2007), 751-793.
doi: 10.1002/mana.200610513. |
[12] |
T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain, Hiroshima Math. J., 12 (1982), 513-528. |
[13] |
B. Muha and Z. Tutek, On a free piston problem for Stokes and Navier-Stokes equations,, To appear in \emph{Glasnik Matemati\v cki}., ().
|
[14] |
B. Muha and Z. Tutek, Numerical analysis of a free piston problem, Math. Commun., 15 (2010), 573-585. |
[15] |
B. Muha and Z. Tutek, On a stationary and evolutionary free piston problem for potential ideal fluid flow, Math. Meth. Appl. Sci., 35 (2012), 1721-1736, DOI:10.1002/mma.2555.
doi: 10.1002/mma.2555. |
[16] |
J. Neustupa and P. Penel, A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall, in Advances in Mathematical Fluid Mechanics, pages 385-407. Springer, Berlin, 2010.
doi: 10.1007/978-3-642-04068-9_24. |
[17] |
V. G. Osmolovskiĭ, Linear and Nonlinear Perturbations of the Operator div, volume 160 of "Translations of Mathematical Monographs," American Mathematical Society, Providence, RI, 1997, Translated from the 1995 Russian original by Tamara Rozhkovskaya. |
[18] |
S. Takeno, Free piston problem for isentropic gas dynamics, Japan J. Indust. Appl. Math., 12 (1995), 163-194.
doi: 10.1007/BF03167287. |
[19] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam, 1977. Studies in Mathematics and its Applications, Vol. 2. |
[1] |
Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations and Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69 |
[2] |
Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159 |
[3] |
Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511 |
[4] |
Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic and Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75 |
[5] |
Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080 |
[6] |
Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397 |
[7] |
Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39 |
[8] |
Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539 |
[9] |
Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161 |
[10] |
Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277 |
[11] |
Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087 |
[12] |
Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053 |
[13] |
Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228 |
[14] |
Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595 |
[15] |
Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113 |
[16] |
Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769 |
[17] |
Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355 |
[18] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[19] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[20] |
Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]