• Previous Article
    The classification of constant weighted curvature curves in the plane with a log-linear density
  • CPAA Home
  • This Issue
  • Next Article
    Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity
July  2014, 13(4): 1629-1639. doi: 10.3934/cpaa.2014.13.1629

Note on evolutionary free piston problem for Stokes equations with slip boundary conditions

1. 

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

2. 

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

Received  April 2012 Revised  October 2012 Published  February 2014

In this paper we study a free boundary fluid-rigid body interaction problem, the free piston problem. We consider an evolutionary incompressible viscous fluid flow through a junction of two pipes. Inside the "vertical" pipe there is a heavy piston which can freely slide along the pipe. On the lateral boundary of the "vertical" pipe we prescribe Navier's slip boundary conditions. We prove the existence of a local in time weak solution. Furthermore, we show that the obtained solution is a strong solution.
Citation: Boris Muha, Zvonimir Tutek. Note on evolutionary free piston problem for Stokes equations with slip boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1629-1639. doi: 10.3934/cpaa.2014.13.1629
References:
[1]

A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, \emph{J. Math. Fluid Mech.}, 7 (2005), 368.  doi: 10.1007/s00021-004-0121-y.  Google Scholar

[2]

C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure,, \emph{Japan. J. Math. (N.S.)}, 20 (1994), 279.   Google Scholar

[3]

C. Conca, J. San Martín H. and M. Tucsnak, Motion of a rigid body in a viscous fluid,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 328 (1999), 473.  doi: 10.1016/S0764-4442(99)80193-1.  Google Scholar

[4]

P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid,, \emph{Czechoslovak Math. J.}, 58 (2008), 961.  doi: 10.1007/s10587-008-0063-2.  Google Scholar

[5]

B. D'Acunto and S. Rionero, A note on the existence and uniqueness of solutions to a free piston problem,, \emph{Rend. Accad. Sci. Fis. Mat. Napoli}, 66 (1999), 75.   Google Scholar

[6]

B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models,, \emph{Comm. Partial Differential Equations}, 25 (2000), 1399.  doi: 10.1080/03605300008821553.  Google Scholar

[7]

G. P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics,, in \emph{Hemodynamical Flows}, (2008), 121.  doi: 10.1007/978-3-7643-7806-6_3.  Google Scholar

[8]

M. Hillairet and D. Serre, Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 20 (2003), 779.  doi: 10.1016/S0294-1449(02)00028-8.  Google Scholar

[9]

M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems,, \emph{SIAM J. Math. Anal.}, 40 (2009), 2451.  doi: 10.1137/080716074.  Google Scholar

[10]

E. Marušić-Paloka., Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid,, \emph{Asymptot. Anal.}, 33 (2003), 51.   Google Scholar

[11]

V. Maz'ya and J. Rossmann, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains,, \emph{Math. Nachr.}, 280 (2007), 751.  doi: 10.1002/mana.200610513.  Google Scholar

[12]

T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain,, \emph{Hiroshima Math. J.}, 12 (1982), 513.   Google Scholar

[13]

B. Muha and Z. Tutek, On a free piston problem for Stokes and Navier-Stokes equations,, To appear in \emph{Glasnik Matemati\v cki}., ().   Google Scholar

[14]

B. Muha and Z. Tutek, Numerical analysis of a free piston problem,, \emph{Math. Commun.}, 15 (2010), 573.   Google Scholar

[15]

B. Muha and Z. Tutek, On a stationary and evolutionary free piston problem for potential ideal fluid flow,, \emph{Math. Meth. Appl. Sci.}, 35 (2012), 1721.  doi: 10.1002/mma.2555.  Google Scholar

[16]

J. Neustupa and P. Penel, A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall,, in \emph{Advances in Mathematical Fluid Mechanics}, (2010), 385.  doi: 10.1007/978-3-642-04068-9_24.  Google Scholar

[17]

V. G. Osmolovskiĭ, Linear and Nonlinear Perturbations of the Operator div, volume 160 of "Translations of Mathematical Monographs,", American Mathematical Society, (1997).   Google Scholar

[18]

S. Takeno, Free piston problem for isentropic gas dynamics,, \emph{Japan J. Indust. Appl. Math.}, 12 (1995), 163.  doi: 10.1007/BF03167287.  Google Scholar

[19]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland Publishing Co., (1977).   Google Scholar

show all references

References:
[1]

A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate,, \emph{J. Math. Fluid Mech.}, 7 (2005), 368.  doi: 10.1007/s00021-004-0121-y.  Google Scholar

[2]

C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure,, \emph{Japan. J. Math. (N.S.)}, 20 (1994), 279.   Google Scholar

[3]

C. Conca, J. San Martín H. and M. Tucsnak, Motion of a rigid body in a viscous fluid,, \emph{C. R. Acad. Sci. Paris S\'er. I Math.}, 328 (1999), 473.  doi: 10.1016/S0764-4442(99)80193-1.  Google Scholar

[4]

P. Cumsille and T. Takahashi, Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid,, \emph{Czechoslovak Math. J.}, 58 (2008), 961.  doi: 10.1007/s10587-008-0063-2.  Google Scholar

[5]

B. D'Acunto and S. Rionero, A note on the existence and uniqueness of solutions to a free piston problem,, \emph{Rend. Accad. Sci. Fis. Mat. Napoli}, 66 (1999), 75.   Google Scholar

[6]

B. Desjardins and M. J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models,, \emph{Comm. Partial Differential Equations}, 25 (2000), 1399.  doi: 10.1080/03605300008821553.  Google Scholar

[7]

G. P. Galdi, Mathematical problems in classical and non-Newtonian fluid mechanics,, in \emph{Hemodynamical Flows}, (2008), 121.  doi: 10.1007/978-3-7643-7806-6_3.  Google Scholar

[8]

M. Hillairet and D. Serre, Chute stationnaire d'un solide dans un fluide visqueux incompressible le long d'un plan incliné,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 20 (2003), 779.  doi: 10.1016/S0294-1449(02)00028-8.  Google Scholar

[9]

M. Hillairet and T. Takahashi, Collisions in three-dimensional fluid structure interaction problems,, \emph{SIAM J. Math. Anal.}, 40 (2009), 2451.  doi: 10.1137/080716074.  Google Scholar

[10]

E. Marušić-Paloka., Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid,, \emph{Asymptot. Anal.}, 33 (2003), 51.   Google Scholar

[11]

V. Maz'ya and J. Rossmann, $L_p$ estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains,, \emph{Math. Nachr.}, 280 (2007), 751.  doi: 10.1002/mana.200610513.  Google Scholar

[12]

T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain,, \emph{Hiroshima Math. J.}, 12 (1982), 513.   Google Scholar

[13]

B. Muha and Z. Tutek, On a free piston problem for Stokes and Navier-Stokes equations,, To appear in \emph{Glasnik Matemati\v cki}., ().   Google Scholar

[14]

B. Muha and Z. Tutek, Numerical analysis of a free piston problem,, \emph{Math. Commun.}, 15 (2010), 573.   Google Scholar

[15]

B. Muha and Z. Tutek, On a stationary and evolutionary free piston problem for potential ideal fluid flow,, \emph{Math. Meth. Appl. Sci.}, 35 (2012), 1721.  doi: 10.1002/mma.2555.  Google Scholar

[16]

J. Neustupa and P. Penel, A weak solvability of the Navier-Stokes equation with Navier's boundary condition around a ball striking the wall,, in \emph{Advances in Mathematical Fluid Mechanics}, (2010), 385.  doi: 10.1007/978-3-642-04068-9_24.  Google Scholar

[17]

V. G. Osmolovskiĭ, Linear and Nonlinear Perturbations of the Operator div, volume 160 of "Translations of Mathematical Monographs,", American Mathematical Society, (1997).   Google Scholar

[18]

S. Takeno, Free piston problem for isentropic gas dynamics,, \emph{Japan J. Indust. Appl. Math.}, 12 (1995), 163.  doi: 10.1007/BF03167287.  Google Scholar

[19]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland Publishing Co., (1977).   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[4]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[5]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[6]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[7]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[8]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005

[9]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[10]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[11]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[12]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[13]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[14]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[15]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[16]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[17]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[18]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[19]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed bvp for the variable-viscosity compressible stokes pdes. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021009

[20]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]