July  2014, 13(4): 1669-1683. doi: 10.3934/cpaa.2014.13.1669

Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge

1. 

Department of Mathematical Sciences, Binghamton University (SUNY), Binghamton, NY 13902-6000, United States

2. 

Department of Mathematics, University of California, San Diego (UCSD), La Jolla, CA 92093-0112, United States

Received  December 2013 Revised  January 2014 Published  February 2014

We consider the Maxwell-Klein-Gordon equation in 2D in the Coulomb gauge. We establish local well-posedness for $s=\frac 14+\epsilon$ for data for the spatial part of the gauge potentials and for $s=\frac 58+\epsilon$ for the solution $\phi$ of the gauged Klein-Gordon equation. The main tool for handling the wave equations is the product estimate established by D'Ancona, Foschi, and Selberg. Due to low regularity, we are unable to use the conventional approaches to handle the elliptic variable $A_0$, so we provide a new approach.
Citation: Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669
References:
[1]

Magdalena Czubak, Local wellposedness for the $2+1$-dimensional monopole equation,, \emph{Anal. PDE}, 3 (2010), 151.  doi: 10.2140/apde.2010.3.151.  Google Scholar

[2]

Piero D'Ancona, Damiano Foschi, and Sigmund Selberg, Product estimates for wave-Sobolev spaces in $2+1$ and $1+1$ dimensions,, In \emph{Nonlinear partial differential equations and hyperbolic wave phenomena}, (2010), 125.  doi: 10.1090/conm/526/10379.  Google Scholar

[3]

Viktor Grigoryan and Andrea R. Nahmod, Almost critical well-posedness for nonlinear wave equation with $Q_{\mu\nu}$ null forms in 2D,, \arXiv{1307.6194}., ().   Google Scholar

[4]

Markus Keel, Tristan Roy, and Terence Tao, Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm,, \emph{Discrete Contin. Dyn. Syst.}, 30 (2011), 573.  doi: 10.3934/dcds.2011.30.573.  Google Scholar

[5]

Sergiu Klainerman and Matei Machedon, Space-time estimates for null forms and the local existence theorem,, \emph{Comm. Pure Appl. Math.}, 46 (1993), 1221.  doi: 10.1002/cpa.3160460902.  Google Scholar

[6]

Sergiu Klainerman and Matei Machedon, On the Maxwell-Klein-Gordon equation with finite energy,, \emph{Duke Math. J.}, 74 (1994), 19.   Google Scholar

[7]

Sergiu Klainerman, Long time behaviour of solutions to nonlinear wave equations,, In \emph{Proceedings of the International Congress of Mathematicians, (1983), 1209.   Google Scholar

[8]

Sergiu Klainerman and Matei Machedon, Estimates for null forms and the spaces $H_{s,\delta}$,, \emph{Internat. Math. Res. Notices}, 17 (1996), 853.  doi: 10.1155/S1073792896000529.  Google Scholar

[9]

Sergiu Klainerman and Sigmund Selberg, Bilinear estimates and applications to nonlinear wave equations,, \emph{Commun. Contemp. Math.}, 4 (2002), 223.  doi: 10.1142/S0219199702000634.  Google Scholar

[10]

Sergiu Klainerman and Daniel Tataru, On the optimal local regularity for Yang-Mills equations in $R^{4+1}$,, \emph{J. Amer. Math. Soc.}, 12 (1999), 93.  doi: 10.1090/S0894-0347-99-00282-9.  Google Scholar

[11]

Matei Machedon and Jacob Sterbenz, Almost optimal local well-posedness for the $(3+1)$-dimensional Maxwell-Klein-Gordon equations,, \emph{J. Amer. Math. Soc.}, 17 (2004), 297.  doi: 10.1090/S0894-0347-03-00445-4.  Google Scholar

[12]

Vincent Moncrief, Global existence of Maxwell-Klein-Gordon fields in $(2+1)$-dimensional spacetime,, \emph{J. Math. Phys.}, 21 (1980), 2291.  doi: 10.1063/1.524669.  Google Scholar

[13]

Hartmut Pecher, Low regularity local well-posedness for the Maxwell-Klein-Gordon equations in Lorenz gauge,, \arXiv{1308.1598}., ().   Google Scholar

[14]

Martin Schwarz, Jr, Global solutions of Maxwell-Higgs on Minkowski space,, \emph{J. Math. Anal. Appl.}, 229 (1999), 426.  doi: 10.1006/jmaa.1998.6164.  Google Scholar

[15]

Sigmund Selberg, Multilinear Spacetime Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations,, Ph.D. Thesis, (1999).   Google Scholar

[16]

Sigmund Selberg, Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in $1+4$ dimensions,, \emph{Comm. Partial Differential Equations}, 27 (2002), 1183.  doi: 10.1081/PDE-120004899.  Google Scholar

[17]

Sigmund Selberg, On an estimate for the wave equation and applications to nonlinear problems,, \emph{Differential Integral Equations}, 15 (2002), 213.   Google Scholar

[18]

Yi Zhou, Local existence with minimal regularity for nonlinear wave equations,, \emph{Amer. J. Math.}, 119 (1997), 671.   Google Scholar

show all references

References:
[1]

Magdalena Czubak, Local wellposedness for the $2+1$-dimensional monopole equation,, \emph{Anal. PDE}, 3 (2010), 151.  doi: 10.2140/apde.2010.3.151.  Google Scholar

[2]

Piero D'Ancona, Damiano Foschi, and Sigmund Selberg, Product estimates for wave-Sobolev spaces in $2+1$ and $1+1$ dimensions,, In \emph{Nonlinear partial differential equations and hyperbolic wave phenomena}, (2010), 125.  doi: 10.1090/conm/526/10379.  Google Scholar

[3]

Viktor Grigoryan and Andrea R. Nahmod, Almost critical well-posedness for nonlinear wave equation with $Q_{\mu\nu}$ null forms in 2D,, \arXiv{1307.6194}., ().   Google Scholar

[4]

Markus Keel, Tristan Roy, and Terence Tao, Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm,, \emph{Discrete Contin. Dyn. Syst.}, 30 (2011), 573.  doi: 10.3934/dcds.2011.30.573.  Google Scholar

[5]

Sergiu Klainerman and Matei Machedon, Space-time estimates for null forms and the local existence theorem,, \emph{Comm. Pure Appl. Math.}, 46 (1993), 1221.  doi: 10.1002/cpa.3160460902.  Google Scholar

[6]

Sergiu Klainerman and Matei Machedon, On the Maxwell-Klein-Gordon equation with finite energy,, \emph{Duke Math. J.}, 74 (1994), 19.   Google Scholar

[7]

Sergiu Klainerman, Long time behaviour of solutions to nonlinear wave equations,, In \emph{Proceedings of the International Congress of Mathematicians, (1983), 1209.   Google Scholar

[8]

Sergiu Klainerman and Matei Machedon, Estimates for null forms and the spaces $H_{s,\delta}$,, \emph{Internat. Math. Res. Notices}, 17 (1996), 853.  doi: 10.1155/S1073792896000529.  Google Scholar

[9]

Sergiu Klainerman and Sigmund Selberg, Bilinear estimates and applications to nonlinear wave equations,, \emph{Commun. Contemp. Math.}, 4 (2002), 223.  doi: 10.1142/S0219199702000634.  Google Scholar

[10]

Sergiu Klainerman and Daniel Tataru, On the optimal local regularity for Yang-Mills equations in $R^{4+1}$,, \emph{J. Amer. Math. Soc.}, 12 (1999), 93.  doi: 10.1090/S0894-0347-99-00282-9.  Google Scholar

[11]

Matei Machedon and Jacob Sterbenz, Almost optimal local well-posedness for the $(3+1)$-dimensional Maxwell-Klein-Gordon equations,, \emph{J. Amer. Math. Soc.}, 17 (2004), 297.  doi: 10.1090/S0894-0347-03-00445-4.  Google Scholar

[12]

Vincent Moncrief, Global existence of Maxwell-Klein-Gordon fields in $(2+1)$-dimensional spacetime,, \emph{J. Math. Phys.}, 21 (1980), 2291.  doi: 10.1063/1.524669.  Google Scholar

[13]

Hartmut Pecher, Low regularity local well-posedness for the Maxwell-Klein-Gordon equations in Lorenz gauge,, \arXiv{1308.1598}., ().   Google Scholar

[14]

Martin Schwarz, Jr, Global solutions of Maxwell-Higgs on Minkowski space,, \emph{J. Math. Anal. Appl.}, 229 (1999), 426.  doi: 10.1006/jmaa.1998.6164.  Google Scholar

[15]

Sigmund Selberg, Multilinear Spacetime Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations,, Ph.D. Thesis, (1999).   Google Scholar

[16]

Sigmund Selberg, Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in $1+4$ dimensions,, \emph{Comm. Partial Differential Equations}, 27 (2002), 1183.  doi: 10.1081/PDE-120004899.  Google Scholar

[17]

Sigmund Selberg, On an estimate for the wave equation and applications to nonlinear problems,, \emph{Differential Integral Equations}, 15 (2002), 213.   Google Scholar

[18]

Yi Zhou, Local existence with minimal regularity for nonlinear wave equations,, \emph{Amer. J. Math.}, 119 (1997), 671.   Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[3]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[7]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[13]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]