Citation: |
[1] |
H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glasnik Matematički, 35 (2000), 161-177. |
[2] |
C. Băcuţă, A. L. Mazzucato, V. Nistor and L. Zikatanov, Interface and mixed boundary value problems on n-dimensional polyhedral domains, Documenta Math., 15 (2010), 687-745. |
[3] |
J. K. Choi and S. Kim, Neumann functions for second order elliptic systems with measurable coefficients, Trans. Amer. Math. Soc., 2013, to appear.doi: 10.1090/S0002-9947-2013-05886-2. |
[4] |
M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.doi: 10.1137/0519043. |
[5] |
M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J., 65 (1992), 333-343.doi: 10.1215/S0012-7094-92-06514-8. |
[6] |
B. E. J. Dahlberg and C. Kenig, Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains, Ann. of Math., 125 (1987), 437-465. |
[7] |
E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari (Italian), Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25-43. |
[8] |
M. Dindoš and M. Mitrea, The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and $C^1$ domains, Arch. Ration. Mech. Anal., 174 (2004), 1-47.doi: 10.1007/s00205-004-0320-y. |
[9] |
D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163. |
[10] |
L. Escauriaza and M. Mitrea, Transmission problems and spectral theory for singular integral operators on Lipschitz domains, J. Funct. Anal., 216 (2004), 141-171.doi: 10.1016/j.jfa.2003.12.005. |
[11] |
E. Fabes, C. Kenig and G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J., 57 (1988), 769-793.doi: 10.1215/S0012-7094-88-05734-1. |
[12] |
D. Fericean, Layer potential analysis of a Neumann problem for the Brinkman system, Mathematica (Cluj), to appear. |
[13] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 Edition, Classics in Mathematics. Springer-Verlag, Berlin, 2001. |
[14] |
S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math., 124 (2007), 139-172.doi: 10.1007/s00229-007-0107-1. |
[15] |
S. Hofmann, M. Mitrea and M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains, Int. Math. Res. Notices, 14 (2010), 2567-2865.doi: 10.1093/imrn/rnp214. |
[16] |
G. C. Hsiao and W. L. Wendland, "Boundary Integral Equations," Springer, Heidelberg, 2008. |
[17] |
D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accesible domains, Adv. Math., 46 (1982), 80-147.doi: 10.1016/0001-8708(82)90055-X. |
[18] |
N. J. Kalton, S. Mayboroda and M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations, Contemp. Math., 445 (2007), 121-177. |
[19] |
N. J. Kalton and M. Mitrea, Stability results on interpolation scales of quasi-Banach spaces and applications, Trans. Amer. Math. Soc., 350 (1998), 3903-3922. |
[20] |
K. Kang and S. Kim, Global pointwise estimates for Green's matrix of second order elliptic systems, arXiv:1001.2618v2 |
[21] |
M. Kohr, M. Lanza de Cristoforis and W. L. Wendland, Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains, Potential Anal., 38 (2013), 1123-1171.doi: 10.1007/s11118-012-9310-0. |
[22] |
M. Kohr, C. Pintea and W. L. Wendland, Stokes-Brinkman transmission problems on Lipschitz and $C^1$ domains in Riemannian manifolds, Commun. Pure Appl. Anal., 9 (2010), 493-537.doi: 10.3934/cpaa.2010.9.493. |
[23] |
M. Kohr, C. Pintea and W. L. Wendland, Brinkman-type operators on Riemannian manifolds: Transmission problems in Lipschitz and $C^1$ domains, Potential Anal., 32 (2010), 229-273.doi: 10.1007/s11118-009-9151-7. |
[24] |
M. Kohr, C. Pintea and W. L. Wendland, Dirichlet-transmission problems for general Brinkman operators on Lipschitz and $C^1$ domains in Riemannian manifolds, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 999-1018.doi: 10.3934/dcdsb.2011.15.999. |
[25] |
M. Kohr, C. Pintea and W. L. Wendland, Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators, Int. Math. Res. Notices, 2012, DOI 10.1093/imrn/RNS158, to appear.doi: 10.1093/imrn/rns158. |
[26] |
M. Kohr, C. Pintea and W. L. Wendland, Dirichlet-transmission problems for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian manifolds, ZAMM Z. Angew. Math. Mech., 93 (2013), 446-458.doi: 10.1002/zamm.201100194. |
[27] |
M. Kohr and I. Pop, "Viscous Incompressible Flow for Low Reynolds Numbers," WIT Press, Southampton (UK), 2004. |
[28] |
V. Maz'ya, M. Mitrea and T. Shaposhnikova, The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO, Funct. Anal. Appl., 43 (2009), 217-235. |
[29] |
V. Maz'ya and J. Rossmann, Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains, Arch. Ration. Mech. Anal., 194 (2009), 669?12.doi: 10.1007/s00205-008-0171-z. |
[30] |
D. Medková, Transmission problem for the Laplace equation and the integral equation method, J. Math. Anal. Appl., 387 (2012), 837-843.doi: 10.1016/j.jmaa.2011.09.041. |
[31] |
O. Mendez and M. Mitrea, The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations, J. Fourier Anal. Appl., 6 (2000), 503-531. |
[32] |
D. Mitrea, M. Mitrea and Shi Qiang, Variable coefficient transmission problems and singular integral operators on non-smooth manifolds, J. Integral Equations Appl., 18 (2006), 361-397. |
[33] |
D. Mitrea, M. Mitrea and M. Taylor, Layer Potentials, the Hodge Laplacian and Global Boundary Problems in Non-Smooth Riemannian Manifolds, Memoirs Amer. Math. Soc., 150 (2001), No. 713.doi: 10.1090/memo/0713. |
[34] |
M. Mitrea, S. Monniaux and M. Wright, , The Stokes operator with Neumann boundary conditions in Lipschitz domains, J. Math. Sci. (New York), 176 (2011), 409-457. |
[35] |
M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal., 163 (1999), 181-251. |
[36] |
M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem, J. Funct. Anal., 176 (2000), 1-79.doi: 10.1006/jfan.2000.3619. |
[37] |
M. Mitrea and M. Taylor, Navier-Stokes equations on Lipschitz domains in Riemannian manifolds, Math. Ann., 321 (2001), 955-987.doi: 10.1007/s002080100261. |
[38] |
M. Mitrea and M. Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque, 344 (2012), viii+241 pp. |
[39] |
J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math., 14 (1961), 577-591.doi: 10.1002/cpa.3160140329. |
[40] |
H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland Publ. Co. Amsterdam, 1978. |
[41] |
J. T. Wloka, B. Rowley and B. Lawruk, "Boundary Value Problems for Elliptic Systems," Cambridge University Press, Cambridge, 1995. |