January  2014, 13(1): 175-202. doi: 10.3934/cpaa.2014.13.175

Neumann-transmission problems for pseudodifferential Brinkman operators on Lipschitz domains in compact Riemannian manifolds

1. 

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu Str., 400084 Cluj-Napoca

2. 

Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart

Received  October 2012 Revised  April 2013 Published  July 2013

The aim of this paper is twofold. On the one hand we construct Neumann-transmission kernels for pseudodifferential Brinkman operators. They are used to provide simple representations of the solution to some transmission problems for the pseudodifferential Brinkman operator. On the other hand, we show the well-posedness of a Neumann-transmission problem for two pseudodifferential Brinkman operators on adjacent Lipschitz domains in a compact Riemannian manifold, with boundary data in some $L^p$, Sobolev or Besov spaces. We rely on the layer potential theory in order to obtain an explicit representation of the solution to this problem. Compactness and invertibility results of associated layer potential operators on $L^p$, Sobolev and Besov spaces are also presented.
Citation: Mirela Kohr, Cornel Pintea, Wolfgang L. Wendland. Neumann-transmission problems for pseudodifferential Brinkman operators on Lipschitz domains in compact Riemannian manifolds. Communications on Pure & Applied Analysis, 2014, 13 (1) : 175-202. doi: 10.3934/cpaa.2014.13.175
References:
[1]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Glasnik Matemati$\checkc$ki, 35 (2000), 161.

[2]

C. Băcuţă, A. L. Mazzucato, V. Nistor and L. Zikatanov, Interface and mixed boundary value problems on n-dimensional polyhedral domains,, Documenta Math., 15 (2010), 687.

[3]

J. K. Choi and S. Kim, Neumann functions for second order elliptic systems with measurable coefficients,, Trans. Amer. Math. Soc., (2013). doi: 10.1090/S0002-9947-2013-05886-2.

[4]

M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results,, SIAM J. Math. Anal., 19 (1988), 613. doi: 10.1137/0519043.

[5]

M. Cwikel, Real and complex interpolation and extrapolation of compact operators,, Duke Math. J., 65 (1992), 333. doi: 10.1215/S0012-7094-92-06514-8.

[6]

B. E. J. Dahlberg and C. Kenig, Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains,, Ann. of Math., 125 (1987), 437.

[7]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari (Italian),, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25.

[8]

M. Dindoš and M. Mitrea, The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and $C^1$ domains,, Arch. Ration. Mech. Anal., 174 (2004), 1. doi: 10.1007/s00205-004-0320-y.

[9]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. of Math., 92 (1970).

[10]

L. Escauriaza and M. Mitrea, Transmission problems and spectral theory for singular integral operators on Lipschitz domains,, J. Funct. Anal., 216 (2004), 141. doi: 10.1016/j.jfa.2003.12.005.

[11]

E. Fabes, C. Kenig and G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains,, Duke Math. J., 57 (1988), 769. doi: 10.1215/S0012-7094-88-05734-1.

[12]

D. Fericean, Layer potential analysis of a Neumann problem for the Brinkman system,, Mathematica (Cluj), ().

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 Edition, (1998).

[14]

S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math.,, \textbf{124} (2007), 124 (2007), 139. doi: 10.1007/s00229-007-0107-1.

[15]

S. Hofmann, M. Mitrea and M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains,, Int. Math. Res. Notices, 14 (2010), 2567. doi: 10.1093/imrn/rnp214.

[16]

G. C. Hsiao and W. L. Wendland, "Boundary Integral Equations,", Springer, (2008).

[17]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accesible domains,, Adv. Math., 46 (1982), 80. doi: 10.1016/0001-8708(82)90055-X.

[18]

N. J. Kalton, S. Mayboroda and M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations,, Contemp. Math., 445 (2007), 121.

[19]

N. J. Kalton and M. Mitrea, Stability results on interpolation scales of quasi-Banach spaces and applications,, Trans. Amer. Math. Soc., 350 (1998), 3903.

[20]

K. Kang and S. Kim, Global pointwise estimates for Green's matrix of second order elliptic systems,, arXiv:1001.2618v2, ().

[21]

M. Kohr, M. Lanza de Cristoforis and W. L. Wendland, Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains,, Potential Anal., 38 (2013), 1123. doi: 10.1007/s11118-012-9310-0.

[22]

M. Kohr, C. Pintea and W. L. Wendland, Stokes-Brinkman transmission problems on Lipschitz and $C^1$ domains in Riemannian manifolds,, Commun. Pure Appl. Anal., 9 (2010), 493. doi: 10.3934/cpaa.2010.9.493.

[23]

M. Kohr, C. Pintea and W. L. Wendland, Brinkman-type operators on Riemannian manifolds: Transmission problems in Lipschitz and $C^1$ domains,, Potential Anal., 32 (2010), 229. doi: 10.1007/s11118-009-9151-7.

[24]

M. Kohr, C. Pintea and W. L. Wendland, Dirichlet-transmission problems for general Brinkman operators on Lipschitz and $C^1$ domains in Riemannian manifolds,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 999. doi: 10.3934/dcdsb.2011.15.999.

[25]

M. Kohr, C. Pintea and W. L. Wendland, Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators,, Int. Math. Res. Notices, (2012). doi: 10.1093/imrn/rns158.

[26]

M. Kohr, C. Pintea and W. L. Wendland, Dirichlet-transmission problems for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian manifolds,, ZAMM Z. Angew. Math. Mech., 93 (2013), 446. doi: 10.1002/zamm.201100194.

[27]

M. Kohr and I. Pop, "Viscous Incompressible Flow for Low Reynolds Numbers,", WIT Press, (2004).

[28]

V. Maz'ya, M. Mitrea and T. Shaposhnikova, The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO,, Funct. Anal. Appl., 43 (2009), 217.

[29]

V. Maz'ya and J. Rossmann, Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains,, Arch. Ration. Mech. Anal., 194 (2009). doi: 10.1007/s00205-008-0171-z.

[30]

D. Medková, Transmission problem for the Laplace equation and the integral equation method,, J. Math. Anal. Appl., 387 (2012), 837. doi: 10.1016/j.jmaa.2011.09.041.

[31]

O. Mendez and M. Mitrea, The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations,, J. Fourier Anal. Appl., 6 (2000), 503.

[32]

D. Mitrea, M. Mitrea and Shi Qiang, Variable coefficient transmission problems and singular integral operators on non-smooth manifolds,, J. Integral Equations Appl., 18 (2006), 361.

[33]

D. Mitrea, M. Mitrea and M. Taylor, Layer Potentials, the Hodge Laplacian and Global Boundary Problems in Non-Smooth Riemannian Manifolds,, Memoirs Amer. Math. Soc., 150 (2001). doi: 10.1090/memo/0713.

[34]

M. Mitrea, S. Monniaux and M. Wright,, The Stokes operator with Neumann boundary conditions in Lipschitz domains,, \textbf{176} (2011), 176 (2011), 409.

[35]

M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds,, J. Funct. Anal., 163 (1999), 181.

[36]

M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem,, J. Funct. Anal., 176 (2000), 1. doi: 10.1006/jfan.2000.3619.

[37]

M. Mitrea and M. Taylor, Navier-Stokes equations on Lipschitz domains in Riemannian manifolds,, Math. Ann., 321 (2001), 955. doi: 10.1007/s002080100261.

[38]

M. Mitrea and M. Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque,, \textbf{344} (2012), 344 (2012).

[39]

J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577. doi: 10.1002/cpa.3160140329.

[40]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland Publ. Co. Amsterdam, (1978).

[41]

J. T. Wloka, B. Rowley and B. Lawruk, "Boundary Value Problems for Elliptic Systems,", Cambridge University Press, (1995).

show all references

References:
[1]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Glasnik Matemati$\checkc$ki, 35 (2000), 161.

[2]

C. Băcuţă, A. L. Mazzucato, V. Nistor and L. Zikatanov, Interface and mixed boundary value problems on n-dimensional polyhedral domains,, Documenta Math., 15 (2010), 687.

[3]

J. K. Choi and S. Kim, Neumann functions for second order elliptic systems with measurable coefficients,, Trans. Amer. Math. Soc., (2013). doi: 10.1090/S0002-9947-2013-05886-2.

[4]

M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results,, SIAM J. Math. Anal., 19 (1988), 613. doi: 10.1137/0519043.

[5]

M. Cwikel, Real and complex interpolation and extrapolation of compact operators,, Duke Math. J., 65 (1992), 333. doi: 10.1215/S0012-7094-92-06514-8.

[6]

B. E. J. Dahlberg and C. Kenig, Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains,, Ann. of Math., 125 (1987), 437.

[7]

E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari (Italian),, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25.

[8]

M. Dindoš and M. Mitrea, The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and $C^1$ domains,, Arch. Ration. Mech. Anal., 174 (2004), 1. doi: 10.1007/s00205-004-0320-y.

[9]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. of Math., 92 (1970).

[10]

L. Escauriaza and M. Mitrea, Transmission problems and spectral theory for singular integral operators on Lipschitz domains,, J. Funct. Anal., 216 (2004), 141. doi: 10.1016/j.jfa.2003.12.005.

[11]

E. Fabes, C. Kenig and G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains,, Duke Math. J., 57 (1988), 769. doi: 10.1215/S0012-7094-88-05734-1.

[12]

D. Fericean, Layer potential analysis of a Neumann problem for the Brinkman system,, Mathematica (Cluj), ().

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 Edition, (1998).

[14]

S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math.,, \textbf{124} (2007), 124 (2007), 139. doi: 10.1007/s00229-007-0107-1.

[15]

S. Hofmann, M. Mitrea and M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes-Kenig-Toro domains,, Int. Math. Res. Notices, 14 (2010), 2567. doi: 10.1093/imrn/rnp214.

[16]

G. C. Hsiao and W. L. Wendland, "Boundary Integral Equations,", Springer, (2008).

[17]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accesible domains,, Adv. Math., 46 (1982), 80. doi: 10.1016/0001-8708(82)90055-X.

[18]

N. J. Kalton, S. Mayboroda and M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations,, Contemp. Math., 445 (2007), 121.

[19]

N. J. Kalton and M. Mitrea, Stability results on interpolation scales of quasi-Banach spaces and applications,, Trans. Amer. Math. Soc., 350 (1998), 3903.

[20]

K. Kang and S. Kim, Global pointwise estimates for Green's matrix of second order elliptic systems,, arXiv:1001.2618v2, ().

[21]

M. Kohr, M. Lanza de Cristoforis and W. L. Wendland, Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains,, Potential Anal., 38 (2013), 1123. doi: 10.1007/s11118-012-9310-0.

[22]

M. Kohr, C. Pintea and W. L. Wendland, Stokes-Brinkman transmission problems on Lipschitz and $C^1$ domains in Riemannian manifolds,, Commun. Pure Appl. Anal., 9 (2010), 493. doi: 10.3934/cpaa.2010.9.493.

[23]

M. Kohr, C. Pintea and W. L. Wendland, Brinkman-type operators on Riemannian manifolds: Transmission problems in Lipschitz and $C^1$ domains,, Potential Anal., 32 (2010), 229. doi: 10.1007/s11118-009-9151-7.

[24]

M. Kohr, C. Pintea and W. L. Wendland, Dirichlet-transmission problems for general Brinkman operators on Lipschitz and $C^1$ domains in Riemannian manifolds,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 999. doi: 10.3934/dcdsb.2011.15.999.

[25]

M. Kohr, C. Pintea and W. L. Wendland, Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators,, Int. Math. Res. Notices, (2012). doi: 10.1093/imrn/rns158.

[26]

M. Kohr, C. Pintea and W. L. Wendland, Dirichlet-transmission problems for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian manifolds,, ZAMM Z. Angew. Math. Mech., 93 (2013), 446. doi: 10.1002/zamm.201100194.

[27]

M. Kohr and I. Pop, "Viscous Incompressible Flow for Low Reynolds Numbers,", WIT Press, (2004).

[28]

V. Maz'ya, M. Mitrea and T. Shaposhnikova, The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO,, Funct. Anal. Appl., 43 (2009), 217.

[29]

V. Maz'ya and J. Rossmann, Mixed boundary value problems for the stationary Navier-Stokes system in polyhedral domains,, Arch. Ration. Mech. Anal., 194 (2009). doi: 10.1007/s00205-008-0171-z.

[30]

D. Medková, Transmission problem for the Laplace equation and the integral equation method,, J. Math. Anal. Appl., 387 (2012), 837. doi: 10.1016/j.jmaa.2011.09.041.

[31]

O. Mendez and M. Mitrea, The Banach envelopes of Besov and Triebel-Lizorkin spaces and applications to partial differential equations,, J. Fourier Anal. Appl., 6 (2000), 503.

[32]

D. Mitrea, M. Mitrea and Shi Qiang, Variable coefficient transmission problems and singular integral operators on non-smooth manifolds,, J. Integral Equations Appl., 18 (2006), 361.

[33]

D. Mitrea, M. Mitrea and M. Taylor, Layer Potentials, the Hodge Laplacian and Global Boundary Problems in Non-Smooth Riemannian Manifolds,, Memoirs Amer. Math. Soc., 150 (2001). doi: 10.1090/memo/0713.

[34]

M. Mitrea, S. Monniaux and M. Wright,, The Stokes operator with Neumann boundary conditions in Lipschitz domains,, \textbf{176} (2011), 176 (2011), 409.

[35]

M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds,, J. Funct. Anal., 163 (1999), 181.

[36]

M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem,, J. Funct. Anal., 176 (2000), 1. doi: 10.1006/jfan.2000.3619.

[37]

M. Mitrea and M. Taylor, Navier-Stokes equations on Lipschitz domains in Riemannian manifolds,, Math. Ann., 321 (2001), 955. doi: 10.1007/s002080100261.

[38]

M. Mitrea and M. Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains, Astérisque,, \textbf{344} (2012), 344 (2012).

[39]

J. Moser, On Harnack's theorem for elliptic differential equations,, Comm. Pure Appl. Math., 14 (1961), 577. doi: 10.1002/cpa.3160140329.

[40]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland Publ. Co. Amsterdam, (1978).

[41]

J. T. Wloka, B. Rowley and B. Lawruk, "Boundary Value Problems for Elliptic Systems,", Cambridge University Press, (1995).

[1]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[2]

Bernd Ammann, Robert Lauter and Victor Nistor. Algebras of pseudodifferential operators on complete manifolds. Electronic Research Announcements, 2003, 9: 80-87.

[3]

Mirela Kohr, Cornel Pintea, Wolfgang L. Wendland. Dirichlet - transmission problems for general Brinkman operators on Lipschitz and $C^1$ domains in Riemannian manifolds. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 999-1018. doi: 10.3934/dcdsb.2011.15.999

[4]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[5]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[6]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[7]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

[8]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[9]

Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016

[10]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[11]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[12]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[13]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[14]

Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 201-210. doi: 10.3934/dcds.2004.10.201

[15]

Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809

[16]

Jaeyoung Byeon, Sang-hyuck Moon. Spike layer solutions for a singularly perturbed Neumann problem: Variational construction without a nondegeneracy. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1921-1965. doi: 10.3934/cpaa.2019089

[17]

Catarina Carvalho, Victor Nistor, Yu Qiao. Fredholm criteria for pseudodifferential operators and induced representations of groupoid algebras. Electronic Research Announcements, 2017, 24: 68-77. doi: 10.3934/era.2017.24.008

[18]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[19]

Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047

[20]

Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]