September  2014, 13(5): 1779-1787. doi: 10.3934/cpaa.2014.13.1779

Multiple Jacobian equations

1. 

Section de Mathématiques, Station 8, EPFL, 1015 Lausanne

2. 

Department of Mathematics, UC Berkeley, Berkeley, CA, 94720, United States

Received  July 2013 Revised  November 2013 Published  June 2014

The existence, regularity and uniqueness of a local diffeomorphism $\varphi$ satisfying \begin{eqnarray} g_{i}(\varphi) \det\nabla\varphi=f_{i}\quad for\ every\ 1\leq i\leq n \end{eqnarray} is discussed.
Citation: Bernard Dacorogna, Olivier Kneuss. Multiple Jacobian equations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1779-1787. doi: 10.3934/cpaa.2014.13.1779
References:
[1]

G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms,, Birkh\, (2012).  doi: 10.1007/978-0-8176-8313-9.  Google Scholar

[2]

B. Dacorogna and N. Fusco, Semi-continuité des fonctionnelles avec contraintes du type $\det\nabla u>0$,, \emph{Boll. Un. Mat. Ital.}, 4-B (1985), 179.   Google Scholar

[3]

B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 7 (1990), 1.   Google Scholar

[4]

J. Moser J, On the volume elements on a manifold,, \emph{Trans. Amer. Math. Soc.}, 120 (1965), 286.   Google Scholar

show all references

References:
[1]

G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms,, Birkh\, (2012).  doi: 10.1007/978-0-8176-8313-9.  Google Scholar

[2]

B. Dacorogna and N. Fusco, Semi-continuité des fonctionnelles avec contraintes du type $\det\nabla u>0$,, \emph{Boll. Un. Mat. Ital.}, 4-B (1985), 179.   Google Scholar

[3]

B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 7 (1990), 1.   Google Scholar

[4]

J. Moser J, On the volume elements on a manifold,, \emph{Trans. Amer. Math. Soc.}, 120 (1965), 286.   Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[3]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]