September  2014, 13(5): 1779-1787. doi: 10.3934/cpaa.2014.13.1779

Multiple Jacobian equations

1. 

Section de Mathématiques, Station 8, EPFL, 1015 Lausanne

2. 

Department of Mathematics, UC Berkeley, Berkeley, CA, 94720, United States

Received  July 2013 Revised  November 2013 Published  June 2014

The existence, regularity and uniqueness of a local diffeomorphism $\varphi$ satisfying \begin{eqnarray} g_{i}(\varphi) \det\nabla\varphi=f_{i}\quad for\ every\ 1\leq i\leq n \end{eqnarray} is discussed.
Citation: Bernard Dacorogna, Olivier Kneuss. Multiple Jacobian equations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1779-1787. doi: 10.3934/cpaa.2014.13.1779
References:
[1]

G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms,, Birkh\, (2012).  doi: 10.1007/978-0-8176-8313-9.  Google Scholar

[2]

B. Dacorogna and N. Fusco, Semi-continuité des fonctionnelles avec contraintes du type $\det\nabla u>0$,, \emph{Boll. Un. Mat. Ital.}, 4-B (1985), 179.   Google Scholar

[3]

B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 7 (1990), 1.   Google Scholar

[4]

J. Moser J, On the volume elements on a manifold,, \emph{Trans. Amer. Math. Soc.}, 120 (1965), 286.   Google Scholar

show all references

References:
[1]

G. Csató, B. Dacorogna and O. Kneuss, The Pullback Equation for Differential Forms,, Birkh\, (2012).  doi: 10.1007/978-0-8176-8313-9.  Google Scholar

[2]

B. Dacorogna and N. Fusco, Semi-continuité des fonctionnelles avec contraintes du type $\det\nabla u>0$,, \emph{Boll. Un. Mat. Ital.}, 4-B (1985), 179.   Google Scholar

[3]

B. Dacorogna and J. Moser, On a partial differential equation involving the Jacobian determinant,, \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 7 (1990), 1.   Google Scholar

[4]

J. Moser J, On the volume elements on a manifold,, \emph{Trans. Amer. Math. Soc.}, 120 (1965), 286.   Google Scholar

[1]

Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663

[2]

Angelo Favini, Rabah Labbas, Keddour Lemrabet, Stéphane Maingot, Hassan D. Sidibé. Resolution and optimal regularity for a biharmonic equation with impedance boundary conditions and some generalizations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4991-5014. doi: 10.3934/dcds.2013.33.4991

[3]

Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445

[4]

Louis Tebou. Simultaneous controllability of some uncoupled semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3721-3743. doi: 10.3934/dcds.2015.35.3721

[5]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[6]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[7]

Ai-Li Yang, Yu-Jiang Wu. Newton-MHSS methods for solving systems of nonlinear equations with complex symmetric Jacobian matrices. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 839-853. doi: 10.3934/naco.2012.2.839

[8]

Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899

[9]

Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113

[10]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[11]

Huaiyu Jian, Xiaolin Liu, Hongjie Ju. The regularity for a class of singular differential equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1307-1319. doi: 10.3934/cpaa.2013.12.1307

[12]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[13]

Martí Prats. Beltrami equations in the plane and Sobolev regularity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 319-332. doi: 10.3934/cpaa.2018018

[14]

Jian-Feng Cai, Raymond H. Chan, Zuowei Shen. Simultaneous cartoon and texture inpainting. Inverse Problems & Imaging, 2010, 4 (3) : 379-395. doi: 10.3934/ipi.2010.4.379

[15]

Zsolt Páles, Vera Zeidan. $V$-Jacobian and $V$-co-Jacobian for Lipschitzian maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 623-646. doi: 10.3934/dcds.2011.29.623

[16]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

[17]

Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455

[18]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[19]

Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537

[20]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]