Advanced Search
Article Contents
Article Contents

Some results for pathwise uniqueness in Hilbert spaces

Abstract Related Papers Cited by
  • An abstract evolution equation in Hilbert spaces with Hölder continuous drift is considered. By proceeding as in [3], we transform the equation in another equation with Lipschitz continuous coefficients.Then we prove existence and uniqueness of this equation by a fixed point argument.
    Mathematics Subject Classification: 35R60, 60H15.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Cerrai, A Hille-Yosida theorem for weakly continuous semigroups, Semigroup Forum, 49 (1994), 349-367.doi: 10.1007/BF02573496.


    G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society, Lecture Notes 293, Cambridge University Press, 2002.doi: 10.1017/CBO9780511543210.


    G. Da Prato and F. Flandoli, Pathwise uniqueness for a class of SDE in Hilbert spaces and applications, J. Funct. Anal., 259 (2010), 243-267.doi: 10.1016/j.jfa.2009.11.019.


    F. Flandoli, Random perturbation of PDEs and fluid dynamic models, Lecture Notes in Mathematics, 2015, Springer, Berlin, 2011.doi: 10.1007/978-3-642-18231-0.


    J. M. Lasry and P. L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math., 55 (1986), 257-266.doi: 10.1007/BF02765025.


    J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, 1968.


    M. Ondreját, Uniqueness for Stochastic Evolution Equations in Banach Spaces, Dissertationes Math. (Rozprawy Mat.), no. 426, 2004.doi: 10.4064/dm426-0-1.


    M. Röckner, B. Schmuland and X. Zhang, The Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions, Comm. Mat. Phys., 11 (2008), 247-259.


    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978.

  • 加载中

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint