Citation: |
[1] |
S. Cerrai, A Hille-Yosida theorem for weakly continuous semigroups, Semigroup Forum, 49 (1994), 349-367.doi: 10.1007/BF02573496. |
[2] |
G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, London Mathematical Society, Lecture Notes 293, Cambridge University Press, 2002.doi: 10.1017/CBO9780511543210. |
[3] |
G. Da Prato and F. Flandoli, Pathwise uniqueness for a class of SDE in Hilbert spaces and applications, J. Funct. Anal., 259 (2010), 243-267.doi: 10.1016/j.jfa.2009.11.019. |
[4] |
F. Flandoli, Random perturbation of PDEs and fluid dynamic models, Lecture Notes in Mathematics, 2015, Springer, Berlin, 2011.doi: 10.1007/978-3-642-18231-0. |
[5] |
J. M. Lasry and P. L. Lions, A remark on regularization in Hilbert spaces, Israel J. Math., 55 (1986), 257-266.doi: 10.1007/BF02765025. |
[6] |
J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, 1968. |
[7] |
M. Ondreját, Uniqueness for Stochastic Evolution Equations in Banach Spaces, Dissertationes Math. (Rozprawy Mat.), no. 426, 2004.doi: 10.4064/dm426-0-1. |
[8] |
M. Röckner, B. Schmuland and X. Zhang, The Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions, Comm. Mat. Phys., 11 (2008), 247-259. |
[9] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978. |