September  2014, 13(5): 1815-1854. doi: 10.3934/cpaa.2014.13.1815

Stabilization of the simplest normal parabolic equation

1. 

Department of Mechanics & Mathematics, Moscow State University, Moscow 119991

Received  November 2013 Revised  April 2014 Published  June 2014

The simplest semilinear parabolic equation of normal type with periodic boundary condition is considered, and the problem of stabilization to zero of its solution with arbitrary initial condition by starting control supported in a prescribed subset is investigated. This problem is reduced to one inequality for starting control, and the proof of this inequality is given.
Citation: Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1815-1854. doi: 10.3934/cpaa.2014.13.1815
References:
[1]

V. Barbu, Feedback stabilization of Navier-Stokes equations,, \emph{ESAIM: Control, 9 (2003), 197. doi: 10.1051/cocv:2003009. Google Scholar

[2]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimentional controllers,, \emph{Indiana Univ. Math. J.}, 53 (2004), 1443. doi: 10.1512/iumj.2004.53.2445. Google Scholar

[3]

V. Barbu, I. Lasiecka and R. Triggiani, Abstract setting of tangential boundary stabilization of Navier-Stokes equations by high-andlow-gain feedback controllers,, \emph{Nonlinear Analysis}, 64 (2006), 2704. doi: 10.1016/j.na.2005.09.012. Google Scholar

[4]

V. Barbu, S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations,, \emph{SIAM J. Control Optim.}, 49 (2011), 1454. doi: 10.1137/100785739. Google Scholar

[5]

J. M. Coron, On null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domains,, \emph{SIAM J. ControlOptim.}, 37 (1999), 1874. doi: 10.1137/S036301299834140X. Google Scholar

[6]

J. M. Coron, Control and Nonlinearity,, Math.Surveys and Monographs, 136 (2007). Google Scholar

[7]

A. V. Fursikov, On one semilinear parabolic equation of normal type,, in \emph{Proceeding volume, 1 (2012), 147. Google Scholar

[8]

A. V. Fursikov, The simplest semilinear parabolic equation of normal type,, \emph{Mathematical Control and Related Fields(MCRF)}, 2 (2012), 141. doi: 10.3934/mcrf.2012.2.141. Google Scholar

[9]

A. V. Fursikov, On the normal semilinear parabolic equations corresponding to 3D Navier-Stokes system,, in \emph{CSMO 2011, (2013), 338. Google Scholar

[10]

A. V. Fursikov, On parabolic system of normal type corresponding to 3D Helmholtz system,, work in progress., (). Google Scholar

[11]

A. V. Fursikov, Stabilizability of quasi linear parabolic equation by feedback boundary control,, \emph{Sbornik: Mathematics}, 192 (2001), 593. doi: 10.1070/sm2001v192n04ABEH000560. Google Scholar

[12]

A. V. Fursikov, Stabilizability of Two-Dimensional Navier-Stokes equations with help of a boundary feedback control,, \emph{J. of Math. Fluid Mech.}, 3 (2001), 259. doi: 10.1007/PL00000972. Google Scholar

[13]

A. V. Fursikov, Real process corresponding to 3D-Navier Stokes system and its feedback stabilization from boundary,, \emph{Amer. Math. Soc. Transl. Series 2}, 206 (2002), 95. Google Scholar

[14]

A. V. Fursikov, Real processes and realizability of a stabilization method for Navier-Stokes equations by boundary feedback control,, \emph{Nonlinear Problems in Mathematical Physics and Related Topics II, (2002), 137. doi: 10.1007/978-1-4615-0701-7_8. Google Scholar

[15]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control,, \emph{Discrete and Cont. Dyn. Syst.}, 10 (2004), 289. doi: 10.3934/dcds.2004.10.289. Google Scholar

[16]

A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications,, Translations of Mathematical Monographs, 187 (2000). Google Scholar

[17]

A. V. Fursikov and A. V. Gorshkov, Certain questions of feedback stabilization for Navier-Stokes equations,, \emph{Evolution equations and control theory (EECT)}, 1 (2012), 109. doi: 10.3934/eect.2012.1.109. Google Scholar

[18]

A. V. Fursikov and A. A. Kornev, Feedback stabilization for Navier-Stokes equations: theory and calculations,, in \emph{Mathematical Aspects of Fluid Mechanics (LMS Lecture Notes Series)}, 402 (2012), 130. Google Scholar

[19]

M. Krstic, On global stabilization of Burgers' equation by boundary control,, \emph{Systems & Control Letters}, 37 (1999), 123. doi: 10.1016/S0167-6911(99)00013-4. Google Scholar

[20]

J.-P. Raymond, Feedback boundary stabilization of the twodimensional Navier-Stokes equations,, \emph{SIAM J. Control Optimization}, 45 (2006), 709. doi: 10.1137/050628726. Google Scholar

[21]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations,, \emph{J. Math. Pures Appl.}, 87 (2007), 627. doi: 10.1016/j.matpur.2007.04.002. Google Scholar

[22]

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers,, \emph{Discrete and Continuous Dynamical Systems-A}, 27 (2010), 1159. doi: 10.3934/dcds.2010.27.1159. Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhauser Verlag AG, (2009). doi: 10.1007/978-3-7643-8994-9. Google Scholar

[24]

V. I. Yudovich, Non-stationary flows of an ideal incompressible fluid,, \emph{Zh. Vychisl. Mat. Mat. Fiz.}, 3 (1963), 1032. Google Scholar

show all references

References:
[1]

V. Barbu, Feedback stabilization of Navier-Stokes equations,, \emph{ESAIM: Control, 9 (2003), 197. doi: 10.1051/cocv:2003009. Google Scholar

[2]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimentional controllers,, \emph{Indiana Univ. Math. J.}, 53 (2004), 1443. doi: 10.1512/iumj.2004.53.2445. Google Scholar

[3]

V. Barbu, I. Lasiecka and R. Triggiani, Abstract setting of tangential boundary stabilization of Navier-Stokes equations by high-andlow-gain feedback controllers,, \emph{Nonlinear Analysis}, 64 (2006), 2704. doi: 10.1016/j.na.2005.09.012. Google Scholar

[4]

V. Barbu, S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations,, \emph{SIAM J. Control Optim.}, 49 (2011), 1454. doi: 10.1137/100785739. Google Scholar

[5]

J. M. Coron, On null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domains,, \emph{SIAM J. ControlOptim.}, 37 (1999), 1874. doi: 10.1137/S036301299834140X. Google Scholar

[6]

J. M. Coron, Control and Nonlinearity,, Math.Surveys and Monographs, 136 (2007). Google Scholar

[7]

A. V. Fursikov, On one semilinear parabolic equation of normal type,, in \emph{Proceeding volume, 1 (2012), 147. Google Scholar

[8]

A. V. Fursikov, The simplest semilinear parabolic equation of normal type,, \emph{Mathematical Control and Related Fields(MCRF)}, 2 (2012), 141. doi: 10.3934/mcrf.2012.2.141. Google Scholar

[9]

A. V. Fursikov, On the normal semilinear parabolic equations corresponding to 3D Navier-Stokes system,, in \emph{CSMO 2011, (2013), 338. Google Scholar

[10]

A. V. Fursikov, On parabolic system of normal type corresponding to 3D Helmholtz system,, work in progress., (). Google Scholar

[11]

A. V. Fursikov, Stabilizability of quasi linear parabolic equation by feedback boundary control,, \emph{Sbornik: Mathematics}, 192 (2001), 593. doi: 10.1070/sm2001v192n04ABEH000560. Google Scholar

[12]

A. V. Fursikov, Stabilizability of Two-Dimensional Navier-Stokes equations with help of a boundary feedback control,, \emph{J. of Math. Fluid Mech.}, 3 (2001), 259. doi: 10.1007/PL00000972. Google Scholar

[13]

A. V. Fursikov, Real process corresponding to 3D-Navier Stokes system and its feedback stabilization from boundary,, \emph{Amer. Math. Soc. Transl. Series 2}, 206 (2002), 95. Google Scholar

[14]

A. V. Fursikov, Real processes and realizability of a stabilization method for Navier-Stokes equations by boundary feedback control,, \emph{Nonlinear Problems in Mathematical Physics and Related Topics II, (2002), 137. doi: 10.1007/978-1-4615-0701-7_8. Google Scholar

[15]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control,, \emph{Discrete and Cont. Dyn. Syst.}, 10 (2004), 289. doi: 10.3934/dcds.2004.10.289. Google Scholar

[16]

A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications,, Translations of Mathematical Monographs, 187 (2000). Google Scholar

[17]

A. V. Fursikov and A. V. Gorshkov, Certain questions of feedback stabilization for Navier-Stokes equations,, \emph{Evolution equations and control theory (EECT)}, 1 (2012), 109. doi: 10.3934/eect.2012.1.109. Google Scholar

[18]

A. V. Fursikov and A. A. Kornev, Feedback stabilization for Navier-Stokes equations: theory and calculations,, in \emph{Mathematical Aspects of Fluid Mechanics (LMS Lecture Notes Series)}, 402 (2012), 130. Google Scholar

[19]

M. Krstic, On global stabilization of Burgers' equation by boundary control,, \emph{Systems & Control Letters}, 37 (1999), 123. doi: 10.1016/S0167-6911(99)00013-4. Google Scholar

[20]

J.-P. Raymond, Feedback boundary stabilization of the twodimensional Navier-Stokes equations,, \emph{SIAM J. Control Optimization}, 45 (2006), 709. doi: 10.1137/050628726. Google Scholar

[21]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations,, \emph{J. Math. Pures Appl.}, 87 (2007), 627. doi: 10.1016/j.matpur.2007.04.002. Google Scholar

[22]

J.-P. Raymond and L. Thevenet, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers,, \emph{Discrete and Continuous Dynamical Systems-A}, 27 (2010), 1159. doi: 10.3934/dcds.2010.27.1159. Google Scholar

[23]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhauser Verlag AG, (2009). doi: 10.1007/978-3-7643-8994-9. Google Scholar

[24]

V. I. Yudovich, Non-stationary flows of an ideal incompressible fluid,, \emph{Zh. Vychisl. Mat. Mat. Fiz.}, 3 (1963), 1032. Google Scholar

[1]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

[2]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[3]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

[4]

Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control. Evolution Equations & Control Theory, 2018, 7 (3) : 447-463. doi: 10.3934/eect.2018022

[5]

Andrei Fursikov. The simplest semilinear parabolic equation of normal type. Mathematical Control & Related Fields, 2012, 2 (2) : 141-170. doi: 10.3934/mcrf.2012.2.141

[6]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

[7]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[8]

Shui-Nee Chow, Kening Lu, Yun-Qiu Shen. Normal forms for quasiperiodic evolutionary equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 65-94. doi: 10.3934/dcds.1996.2.65

[9]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[10]

John A. D. Appleby, Xuerong Mao, Alexandra Rodkina. On stochastic stabilization of difference equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 843-857. doi: 10.3934/dcds.2006.15.843

[11]

Serge Nicaise, Fredi Tröltzsch. Optimal control of some quasilinear Maxwell equations of parabolic type. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1375-1391. doi: 10.3934/dcdss.2017073

[12]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[13]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[14]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[15]

Serge Nicaise. Control and stabilization of 2 × 2 hyperbolic systems on graphs. Mathematical Control & Related Fields, 2017, 7 (1) : 53-72. doi: 10.3934/mcrf.2017004

[16]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[17]

Tobias Breiten, Karl Kunisch. Boundary feedback stabilization of the monodomain equations. Mathematical Control & Related Fields, 2017, 7 (3) : 369-391. doi: 10.3934/mcrf.2017013

[18]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[19]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[20]

Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020106

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]