September  2014, 13(5): 1935-1969. doi: 10.3934/cpaa.2014.13.1935

Eliminating flutter for clamped von Karman plates immersed in subsonic flows

1. 

University of Memphis, Department of Mathematical Sciences, 373 Dunn Hall, Memphis, TN 38152

2. 

Oregon State University, Department of Mathematics, 368 Kidder Hall, Corvallis, OR 97330

Received  January 2014 Revised  April 2014 Published  June 2014

We address the long-time behavior of a non-rotational von Karman plate in an inviscid potential flow. The model arises in aeroelasticity and models the interaction between a thin, nonlinear panel and a flow of gas in which it is immersed [6, 21, 23]. Recent results in [16, 18] show that the plate component of the dynamics (in the presence of a physical plate nonlinearity) converge to a global compact attracting set of finite dimension; these results were obtained in the absence of mechanical damping of any type. Here we show that, by incorporating mechanical damping the full flow-plate system, full trajectories---both plate and flow---converge strongly to (the set of) stationary states. Weak convergence results require ``minimal" interior damping, and strong convergence of the dynamics are shown with sufficiently large damping. We require the existence of a ``good" energy balance equation, which is only available when the flows are subsonic. Our proof is based on first showing the convergence properties for regular solutions, which in turn requires propagation of initial regularity on the infinite horizon. Then, we utilize the exponential decay of the difference of two plate trajectories to show that full flow-plate trajectories are uniform-in-time Hadamard continuous. This allows us to pass convergence properties of smooth initial data to finite energy type initial data. Physically, our results imply that flutter (a non-static end behavior) does not occur in subsonic dynamics. While such results were known for rotational (compact/regular) plate dynamics [14] (and references therein), the result presented herein is the first such result obtained for non-regularized---the most physically relevant---models.
Citation: Irena Lasiecka, Justin Webster. Eliminating flutter for clamped von Karman plates immersed in subsonic flows. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1935-1969. doi: 10.3934/cpaa.2014.13.1935
References:
[1]

A. Babin and M. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).   Google Scholar

[2]

A. V. Balakrishnan, Aeroelasticity-Continuum Theory,, Springer-Verlag, (2012).  doi: 10.1007/978-1-4614-3609-6.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations,, \emph{Discrete Contin. Dyn. Syst.}, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

R. Bisplinghoff and H. Ashley, Principles of Aeroelasticity,, Wiley, (1962).   Google Scholar

[5]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction,, Springer-Verlag, (1976).   Google Scholar

[6]

V. V. Bolotin, Nonconservative Problems of Elastic Stability,, Pergamon Press, (1963).   Google Scholar

[7]

A. Boutet de Monvel and I. Chueshov, The problem of interaction of von Karman plate with subsonic flow gas,, \emph{Math. Methods in Appl. Sc.}, 22 (1999), 801.  doi: 10.1002/(SICI)1099-1476(19990710)22:10<801::AID-MMA61>3.0.CO;2-T.  Google Scholar

[8]

L. Boutet de Monvel and I. Chueshov, Non-linear oscillations of a plate in a flow of gas, C.R., \emph{Acad. Sci. Paris, 322 (1996), 1001.   Google Scholar

[9]

L. Boutet de Monvel and I. Chueshov, Oscillation of von Karman's plate in a potential flow of gas,, \emph{Izvestiya RAN: Ser. Mat.}, 63 (1999), 219.  doi: 10.1070/im1999v063n02ABEH000237.  Google Scholar

[10]

L. Boutet de Monvel, I. Chueshov and A. Rezounenko, Long-time behaviour of strong solutions of retarded nonlinear PDEs,, \emph{Comm. PDEs}, 22 (1997), 1453.  doi: 10.1080/03605309708821307.  Google Scholar

[11]

I. Chueshov, On a certain system of equations with delay, occurring in aeroelasticity,, \emph{Teor. Funktsii Funktsional. Anal. i Prilozhen}, 54 (1990), 123.  doi: 10.1007/BF01097291.  Google Scholar

[12]

I. Chueshov, Dynamics of von Karman plate in a potential flow of gas: rigorous results and unsolved problems,, \emph{Proceedings of the 16th IMACS World Congress}, (2000), 1.   Google Scholar

[13]

I. Chueshov and I. Lasiecka, Long-time Behavior of Second-order Evolutions with Nonlinear Damping,, Memoires of AMS, (2008).  doi: 10.1090/memo/0912.  Google Scholar

[14]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Well-posedness and Long-Time Behavior,, Monographs, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[15]

I. Chueshov and I. Lasiecka, Generation of a semigroup and hidden regularity in nonlinear subsonic flow-structure interactions with absorbing boundary conditions,, \emph{Jour. Abstr. Differ. Equ. Appl.}, 3 (2012), 1.   Google Scholar

[16]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping,, arXiv:1208.5245, (2012).   Google Scholar

[17]

I. Chueshov, I. Lasiecka and J. T. Webster, Evolution semigroups for supersonic flow-plate interactions,, \emph{J. of Diff. Eqs.}, 254 (2013), 1741.  doi: 10.1016/j.jde.2012.11.009.  Google Scholar

[18]

I. Chueshov, I. Lasiecka and J. T. Webster, Flow-plate interactions: Well-posedness and long-time behavior,, \emph{Discrete Contin. Dyn. Syst. Ser. S, 7 (2014).   Google Scholar

[19]

P. Ciarlet and P. Rabier, Les Equations de Von Karman,, Springer, (1980).   Google Scholar

[20]

C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups,, \emph{J. Func. Anal}, 13 (1973), 97.   Google Scholar

[21]

E. Dowell, Nonlinear Oscillations of a Fluttering Plate, I and II,, \emph{AIAA J.}, 4 (1966), 1267.   Google Scholar

[22]

E. Dowell, Panel flutter-A review of the aeroelastic stability of plates and shells,, \emph{AIAA Journal}, 8 (1970), 385.   Google Scholar

[23]

E. Dowell, A Modern Course in Aeroelasticity,, Kluwer Academic Publishers, (2004).   Google Scholar

[24]

E. H. Dowell, Some recent advances in nonlinear aeroelasticity: fluid-structure interaction in the 21st century,, Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, (2010).   Google Scholar

[25]

D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity,, Cambridge Univ. Press, (2002).   Google Scholar

[26]

E. A. Krasil'shchikova, The Thin Wing in a Compressible Flow,, Nauka, (1978).   Google Scholar

[27]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems,, \emph{Prog. Nonlin. Differential Eqs. and Their App.}, 50 (2002), 197.   Google Scholar

[28]

J. Lagnese, Boundary Stabilization of Thin Plates,, SIAM, (1989).  doi: 10.1137/1.9781611970821.  Google Scholar

[29]

P. D. Lax and R. S. Phillips, Scattering Theory,, Academic Press, (1967).   Google Scholar

[30]

I. Lasiecka and J. T. Webster, Generation of bounded semigroups in nonlinear flow-structure interactions with boundary damping,, \emph{Math. Methods in App. Sc.}, (2011).   Google Scholar

[31]

J.-L. Lions and E. Magenes, Problmes aux limites non homognes et applications,, vol. 1, (1968).   Google Scholar

[32]

E. Livne, Future of Airplane Aeroelasticity,, \emph{J. of Aircraft}, 40 (2003), 1066.   Google Scholar

[33]

Y. Lu, Uniform decay rates for the energy in nonlinear fluid structure interactions with monotone viscous damping,, \emph{Palestine J. Mathematics}, 2 (2013), 215.   Google Scholar

[34]

S. Miyatake, Mixed problem for hyperbolic equation of second order,, \emph{J. Math. Kyoto Univ.}, 13 (1973), 435.   Google Scholar

[35]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,, Handboook of Differential Equations, (2008).  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[36]

I. Ryzhkova, Stabilization of a von Karman plate in the presence of thermal effects in a subsonic potential flow of gas,, \emph{J. Math. Anal. and Appl.}, 294 (2004), 462.  doi: 10.1016/j.jmaa.2004.02.021.  Google Scholar

[37]

I. Ryzhkova, Dynamics of a thermoelastic von Karman plate in a subsonic gas flow,, \emph{Zeitschrift Ang. Math. Phys.}, 58 (2007), 246.  doi: 10.1007/s00033-006-0080-7.  Google Scholar

[38]

M. Slemrod, Weak asymptotic decay via a "relaxed invariance principle" for a wave equation with nonlinear, nonmonotone damping,, \emph{Proc. Royal Soc., 113 (1989), 87.  doi: 10.1017/S0308210500023970.  Google Scholar

[39]

D. Tataru, On the regularity of boundary traces for the wave equation,, \emph{Ann. Scuola Normale. Sup. di Pisa.}, 26 (1998), 185.   Google Scholar

[40]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[41]

J. T. Webster, Weak and strong solutions of a nonlinear subsonic flow-structure interaction: semigroup approach,, \emph{Nonlinear Analysis}, 74 (2011), 3123.  doi: 10.1016/j.na.2011.01.028.  Google Scholar

show all references

References:
[1]

A. Babin and M. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).   Google Scholar

[2]

A. V. Balakrishnan, Aeroelasticity-Continuum Theory,, Springer-Verlag, (2012).  doi: 10.1007/978-1-4614-3609-6.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations,, \emph{Discrete Contin. Dyn. Syst.}, 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

R. Bisplinghoff and H. Ashley, Principles of Aeroelasticity,, Wiley, (1962).   Google Scholar

[5]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction,, Springer-Verlag, (1976).   Google Scholar

[6]

V. V. Bolotin, Nonconservative Problems of Elastic Stability,, Pergamon Press, (1963).   Google Scholar

[7]

A. Boutet de Monvel and I. Chueshov, The problem of interaction of von Karman plate with subsonic flow gas,, \emph{Math. Methods in Appl. Sc.}, 22 (1999), 801.  doi: 10.1002/(SICI)1099-1476(19990710)22:10<801::AID-MMA61>3.0.CO;2-T.  Google Scholar

[8]

L. Boutet de Monvel and I. Chueshov, Non-linear oscillations of a plate in a flow of gas, C.R., \emph{Acad. Sci. Paris, 322 (1996), 1001.   Google Scholar

[9]

L. Boutet de Monvel and I. Chueshov, Oscillation of von Karman's plate in a potential flow of gas,, \emph{Izvestiya RAN: Ser. Mat.}, 63 (1999), 219.  doi: 10.1070/im1999v063n02ABEH000237.  Google Scholar

[10]

L. Boutet de Monvel, I. Chueshov and A. Rezounenko, Long-time behaviour of strong solutions of retarded nonlinear PDEs,, \emph{Comm. PDEs}, 22 (1997), 1453.  doi: 10.1080/03605309708821307.  Google Scholar

[11]

I. Chueshov, On a certain system of equations with delay, occurring in aeroelasticity,, \emph{Teor. Funktsii Funktsional. Anal. i Prilozhen}, 54 (1990), 123.  doi: 10.1007/BF01097291.  Google Scholar

[12]

I. Chueshov, Dynamics of von Karman plate in a potential flow of gas: rigorous results and unsolved problems,, \emph{Proceedings of the 16th IMACS World Congress}, (2000), 1.   Google Scholar

[13]

I. Chueshov and I. Lasiecka, Long-time Behavior of Second-order Evolutions with Nonlinear Damping,, Memoires of AMS, (2008).  doi: 10.1090/memo/0912.  Google Scholar

[14]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Well-posedness and Long-Time Behavior,, Monographs, (2010).  doi: 10.1007/978-0-387-87712-9.  Google Scholar

[15]

I. Chueshov and I. Lasiecka, Generation of a semigroup and hidden regularity in nonlinear subsonic flow-structure interactions with absorbing boundary conditions,, \emph{Jour. Abstr. Differ. Equ. Appl.}, 3 (2012), 1.   Google Scholar

[16]

I. Chueshov, I. Lasiecka and J. T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping,, arXiv:1208.5245, (2012).   Google Scholar

[17]

I. Chueshov, I. Lasiecka and J. T. Webster, Evolution semigroups for supersonic flow-plate interactions,, \emph{J. of Diff. Eqs.}, 254 (2013), 1741.  doi: 10.1016/j.jde.2012.11.009.  Google Scholar

[18]

I. Chueshov, I. Lasiecka and J. T. Webster, Flow-plate interactions: Well-posedness and long-time behavior,, \emph{Discrete Contin. Dyn. Syst. Ser. S, 7 (2014).   Google Scholar

[19]

P. Ciarlet and P. Rabier, Les Equations de Von Karman,, Springer, (1980).   Google Scholar

[20]

C. M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups,, \emph{J. Func. Anal}, 13 (1973), 97.   Google Scholar

[21]

E. Dowell, Nonlinear Oscillations of a Fluttering Plate, I and II,, \emph{AIAA J.}, 4 (1966), 1267.   Google Scholar

[22]

E. Dowell, Panel flutter-A review of the aeroelastic stability of plates and shells,, \emph{AIAA Journal}, 8 (1970), 385.   Google Scholar

[23]

E. Dowell, A Modern Course in Aeroelasticity,, Kluwer Academic Publishers, (2004).   Google Scholar

[24]

E. H. Dowell, Some recent advances in nonlinear aeroelasticity: fluid-structure interaction in the 21st century,, Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, (2010).   Google Scholar

[25]

D. H. Hodges and G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity,, Cambridge Univ. Press, (2002).   Google Scholar

[26]

E. A. Krasil'shchikova, The Thin Wing in a Compressible Flow,, Nauka, (1978).   Google Scholar

[27]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems,, \emph{Prog. Nonlin. Differential Eqs. and Their App.}, 50 (2002), 197.   Google Scholar

[28]

J. Lagnese, Boundary Stabilization of Thin Plates,, SIAM, (1989).  doi: 10.1137/1.9781611970821.  Google Scholar

[29]

P. D. Lax and R. S. Phillips, Scattering Theory,, Academic Press, (1967).   Google Scholar

[30]

I. Lasiecka and J. T. Webster, Generation of bounded semigroups in nonlinear flow-structure interactions with boundary damping,, \emph{Math. Methods in App. Sc.}, (2011).   Google Scholar

[31]

J.-L. Lions and E. Magenes, Problmes aux limites non homognes et applications,, vol. 1, (1968).   Google Scholar

[32]

E. Livne, Future of Airplane Aeroelasticity,, \emph{J. of Aircraft}, 40 (2003), 1066.   Google Scholar

[33]

Y. Lu, Uniform decay rates for the energy in nonlinear fluid structure interactions with monotone viscous damping,, \emph{Palestine J. Mathematics}, 2 (2013), 215.   Google Scholar

[34]

S. Miyatake, Mixed problem for hyperbolic equation of second order,, \emph{J. Math. Kyoto Univ.}, 13 (1973), 435.   Google Scholar

[35]

A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,, Handboook of Differential Equations, (2008).  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[36]

I. Ryzhkova, Stabilization of a von Karman plate in the presence of thermal effects in a subsonic potential flow of gas,, \emph{J. Math. Anal. and Appl.}, 294 (2004), 462.  doi: 10.1016/j.jmaa.2004.02.021.  Google Scholar

[37]

I. Ryzhkova, Dynamics of a thermoelastic von Karman plate in a subsonic gas flow,, \emph{Zeitschrift Ang. Math. Phys.}, 58 (2007), 246.  doi: 10.1007/s00033-006-0080-7.  Google Scholar

[38]

M. Slemrod, Weak asymptotic decay via a "relaxed invariance principle" for a wave equation with nonlinear, nonmonotone damping,, \emph{Proc. Royal Soc., 113 (1989), 87.  doi: 10.1017/S0308210500023970.  Google Scholar

[39]

D. Tataru, On the regularity of boundary traces for the wave equation,, \emph{Ann. Scuola Normale. Sup. di Pisa.}, 26 (1998), 185.   Google Scholar

[40]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[41]

J. T. Webster, Weak and strong solutions of a nonlinear subsonic flow-structure interaction: semigroup approach,, \emph{Nonlinear Analysis}, 74 (2011), 3123.  doi: 10.1016/j.na.2011.01.028.  Google Scholar

[1]

George Avalos. Strong stability of PDE semigroups via a generator resolvent criterion. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 207-218. doi: 10.3934/dcdss.2008.1.207

[2]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[3]

Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89

[4]

Andrey V. Kremnev, Alexander S. Kuleshov. Nonlinear dynamics and stability of the skateboard. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 85-103. doi: 10.3934/dcdss.2010.3.85

[5]

Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274

[6]

Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881

[7]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[8]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[9]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[10]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[11]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[12]

Igor Chueshov, Stanislav Kolbasin. Long-time dynamics in plate models with strong nonlinear damping. Communications on Pure & Applied Analysis, 2012, 11 (2) : 659-674. doi: 10.3934/cpaa.2012.11.659

[13]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[14]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[15]

Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013

[16]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[17]

Jifeng Chu, Maurizio Garrione, Filippo Gazzola. Stability analysis in some strongly prestressed rectangular plates. Evolution Equations & Control Theory, 2020, 9 (1) : 275-299. doi: 10.3934/eect.2020006

[18]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[19]

John R. Tucker. Attractors and kernels: Linking nonlinear PDE semigroups to harmonic analysis state-space decomposition. Conference Publications, 2001, 2001 (Special) : 366-370. doi: 10.3934/proc.2001.2001.366

[20]

Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial & Management Optimization, 2009, 5 (3) : 585-601. doi: 10.3934/jimo.2009.5.585

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]