September  2014, 13(5): 2005-2038. doi: 10.3934/cpaa.2014.13.2005

The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction

1. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Rawles Hall, Bloomington, Indiana 47405, United States

2. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN, 47205

Received  August 2013 Revised  January 2014 Published  June 2014

In continuation with earlier works on the shallow water equations in a rectangle [10, 11], we investigate in this article the fully inviscid nonlinear shallow water equations in space dimension two in a rectangle $(0,1)_x \times (0,1)_y$. We address in this article the subcritical case, corresponding to the condition (3) below. Assuming space periodicity in the $y$-direction, we propose the boundary conditions for the $x$-direction which are suited for the subcritical case and develop, for this problem, results of existence, uniqueness and regularity of solutions locally in time for the corresponding initial and boundary value problem.
Citation: Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005
References:
[1]

R. A. Adams, Sobolev Spaces,, Series in Pure and Applied Mathematics, 65 (1975).   Google Scholar

[2]

S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations,, Oxford University Press, (2007).   Google Scholar

[3]

L. Comtet, Advanced Combinatorics,, D. Reidel, (1978).   Google Scholar

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations,, North-Holland Publishing Co., (1982).   Google Scholar

[5]

Faà F.di Bruno, Note sur une nouvelle formule de calcul differentiel,, vol. 1, (1857).   Google Scholar

[6]

K. O. Friedrichs, The identity of weak and strong extensions of differential operator,, Trans. Amer. Math. Soc. \textbf{55} (1944), 55 (1944), 132.   Google Scholar

[7]

Loukas Grafakos, Classical Fourier Analysis,, Second ed., (2008).   Google Scholar

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).   Google Scholar

[9]

A. Huang, M. Petcu, and R. Temam, The one-dimensional supercritical shallow-water equations with topography,, \emph{Annals of the University of Bucharest (Mathematical Series)}, 2 (LX) (2011), 63.   Google Scholar

[10]

A. Huang, M. Petcu, and R. Temam, The nonlinear 2d supercritical inviscid shallow water equations in a rectangle,, submitted., ().   Google Scholar

[11]

A. Huang and R. Temam, The linearized 2d inviscid shallow water equations in a rectangle: boundary conditions and well-posedness,, \emph{Archive for Rational Mechanics and Analysis}, 211 (2014), 1027.  doi: 10.1007/s00205-013-0702-0.  Google Scholar

[12]

A. Huang and R. Temam, The linear hyperbolic initial boundary value problems in a domain with corners,, accepted by \emph{Discrete and Continuous Dynamical System - Series B}, ().   Google Scholar

[13]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, \emph{Comm. Pure Appl. Math}, 23 (1970), 277.   Google Scholar

[14]

J. L. Lions, Problèmes aux Limites dans les Équations aux Dérivées Partielles, Montréal,, Presses de l'Universit\'e de Montr\'eal, (1965).   Google Scholar

[15]

Ya. B. Lopatinskii, The mixed Cauchy-Dirichlet type problem for equations of hyperbolic type,, \emph{Dopovfdf Akad. Nauk Ukrai''n. RSR Ser. A}, 668 (1970), 592.   Google Scholar

[16]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I,, \emph{Trans. Amer. Math. Soc.}, 176 (1973), 141.   Google Scholar

[17]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II,, \emph{Trans. Amer. Math. Soc.}, 198 (1974), 155.   Google Scholar

[18]

M. Petcu and R. Temam, The one-dimensional shallow water equations with transparent boundary conditions,, \emph{Math. Meth. Appl. Sci.}, (2011).   Google Scholar

[19]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems,, \emph{Trans. Amer. Math. Soc.}, 189 (1974), 303.   Google Scholar

[20]

A. Rousseau, R. Temam, and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case,, \emph{J. Math. Pures Appl.}, 89 (2008), 297.  doi: 10.1016/j.matpur.2007.12.001.  Google Scholar

[21]

S. Smale, Smooth solutions of the heat and wave equations,, \emph{Comment. Math. Helv.}, 55 (1980), 1.  doi: 10.1007/BF02566671.  Google Scholar

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation,, \emph{Adv. Diff. Equations}, 15 (2010), 1001.   Google Scholar

[23]

M. E. Taylor, Partial Differential Equations. III Nonlinear Equations,, vol. 117, (1997).   Google Scholar

[24]

R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations,, \emph{J. Differential Equations}, 43 (1982), 73.  doi: 10.1016/0022-0396(82)90075-4.  Google Scholar

[25]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001).   Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Series in Pure and Applied Mathematics, 65 (1975).   Google Scholar

[2]

S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations,, Oxford University Press, (2007).   Google Scholar

[3]

L. Comtet, Advanced Combinatorics,, D. Reidel, (1978).   Google Scholar

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations,, North-Holland Publishing Co., (1982).   Google Scholar

[5]

Faà F.di Bruno, Note sur une nouvelle formule de calcul differentiel,, vol. 1, (1857).   Google Scholar

[6]

K. O. Friedrichs, The identity of weak and strong extensions of differential operator,, Trans. Amer. Math. Soc. \textbf{55} (1944), 55 (1944), 132.   Google Scholar

[7]

Loukas Grafakos, Classical Fourier Analysis,, Second ed., (2008).   Google Scholar

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).   Google Scholar

[9]

A. Huang, M. Petcu, and R. Temam, The one-dimensional supercritical shallow-water equations with topography,, \emph{Annals of the University of Bucharest (Mathematical Series)}, 2 (LX) (2011), 63.   Google Scholar

[10]

A. Huang, M. Petcu, and R. Temam, The nonlinear 2d supercritical inviscid shallow water equations in a rectangle,, submitted., ().   Google Scholar

[11]

A. Huang and R. Temam, The linearized 2d inviscid shallow water equations in a rectangle: boundary conditions and well-posedness,, \emph{Archive for Rational Mechanics and Analysis}, 211 (2014), 1027.  doi: 10.1007/s00205-013-0702-0.  Google Scholar

[12]

A. Huang and R. Temam, The linear hyperbolic initial boundary value problems in a domain with corners,, accepted by \emph{Discrete and Continuous Dynamical System - Series B}, ().   Google Scholar

[13]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, \emph{Comm. Pure Appl. Math}, 23 (1970), 277.   Google Scholar

[14]

J. L. Lions, Problèmes aux Limites dans les Équations aux Dérivées Partielles, Montréal,, Presses de l'Universit\'e de Montr\'eal, (1965).   Google Scholar

[15]

Ya. B. Lopatinskii, The mixed Cauchy-Dirichlet type problem for equations of hyperbolic type,, \emph{Dopovfdf Akad. Nauk Ukrai''n. RSR Ser. A}, 668 (1970), 592.   Google Scholar

[16]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I,, \emph{Trans. Amer. Math. Soc.}, 176 (1973), 141.   Google Scholar

[17]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II,, \emph{Trans. Amer. Math. Soc.}, 198 (1974), 155.   Google Scholar

[18]

M. Petcu and R. Temam, The one-dimensional shallow water equations with transparent boundary conditions,, \emph{Math. Meth. Appl. Sci.}, (2011).   Google Scholar

[19]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems,, \emph{Trans. Amer. Math. Soc.}, 189 (1974), 303.   Google Scholar

[20]

A. Rousseau, R. Temam, and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case,, \emph{J. Math. Pures Appl.}, 89 (2008), 297.  doi: 10.1016/j.matpur.2007.12.001.  Google Scholar

[21]

S. Smale, Smooth solutions of the heat and wave equations,, \emph{Comment. Math. Helv.}, 55 (1980), 1.  doi: 10.1007/BF02566671.  Google Scholar

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation,, \emph{Adv. Diff. Equations}, 15 (2010), 1001.   Google Scholar

[23]

M. E. Taylor, Partial Differential Equations. III Nonlinear Equations,, vol. 117, (1997).   Google Scholar

[24]

R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations,, \emph{J. Differential Equations}, 43 (1982), 73.  doi: 10.1016/0022-0396(82)90075-4.  Google Scholar

[25]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001).   Google Scholar

[1]

Marta Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1653-1667. doi: 10.3934/cpaa.2014.13.1653

[2]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[3]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[4]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[5]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[6]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[7]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[8]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[9]

Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331

[10]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001

[11]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[12]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[13]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[14]

Peng-Fei Yao. On shallow shell equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 697-722. doi: 10.3934/dcdss.2009.2.697

[15]

Vicent Caselles. An existence and uniqueness result for flux limited diffusion equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1151-1195. doi: 10.3934/dcds.2011.31.1151

[16]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[17]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[18]

Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781

[19]

Aaron Hoffman, Benjamin Kennedy. Existence and uniqueness of traveling waves in a class of unidirectional lattice differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 137-167. doi: 10.3934/dcds.2011.30.137

[20]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]