September  2014, 13(5): 2005-2038. doi: 10.3934/cpaa.2014.13.2005

The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction

1. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 East Third Street, Rawles Hall, Bloomington, Indiana 47405, United States

2. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN, 47205

Received  August 2013 Revised  January 2014 Published  June 2014

In continuation with earlier works on the shallow water equations in a rectangle [10, 11], we investigate in this article the fully inviscid nonlinear shallow water equations in space dimension two in a rectangle $(0,1)_x \times (0,1)_y$. We address in this article the subcritical case, corresponding to the condition (3) below. Assuming space periodicity in the $y$-direction, we propose the boundary conditions for the $x$-direction which are suited for the subcritical case and develop, for this problem, results of existence, uniqueness and regularity of solutions locally in time for the corresponding initial and boundary value problem.
Citation: Aimin Huang, Roger Temam. The nonlinear 2D subcritical inviscid shallow water equations with periodicity in one direction. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2005-2038. doi: 10.3934/cpaa.2014.13.2005
References:
[1]

R. A. Adams, Sobolev Spaces,, Series in Pure and Applied Mathematics, 65 (1975).   Google Scholar

[2]

S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations,, Oxford University Press, (2007).   Google Scholar

[3]

L. Comtet, Advanced Combinatorics,, D. Reidel, (1978).   Google Scholar

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations,, North-Holland Publishing Co., (1982).   Google Scholar

[5]

Faà F.di Bruno, Note sur une nouvelle formule de calcul differentiel,, vol. 1, (1857).   Google Scholar

[6]

K. O. Friedrichs, The identity of weak and strong extensions of differential operator,, Trans. Amer. Math. Soc. \textbf{55} (1944), 55 (1944), 132.   Google Scholar

[7]

Loukas Grafakos, Classical Fourier Analysis,, Second ed., (2008).   Google Scholar

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).   Google Scholar

[9]

A. Huang, M. Petcu, and R. Temam, The one-dimensional supercritical shallow-water equations with topography,, \emph{Annals of the University of Bucharest (Mathematical Series)}, 2 (LX) (2011), 63.   Google Scholar

[10]

A. Huang, M. Petcu, and R. Temam, The nonlinear 2d supercritical inviscid shallow water equations in a rectangle,, submitted., ().   Google Scholar

[11]

A. Huang and R. Temam, The linearized 2d inviscid shallow water equations in a rectangle: boundary conditions and well-posedness,, \emph{Archive for Rational Mechanics and Analysis}, 211 (2014), 1027.  doi: 10.1007/s00205-013-0702-0.  Google Scholar

[12]

A. Huang and R. Temam, The linear hyperbolic initial boundary value problems in a domain with corners,, accepted by \emph{Discrete and Continuous Dynamical System - Series B}, ().   Google Scholar

[13]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, \emph{Comm. Pure Appl. Math}, 23 (1970), 277.   Google Scholar

[14]

J. L. Lions, Problèmes aux Limites dans les Équations aux Dérivées Partielles, Montréal,, Presses de l'Universit\'e de Montr\'eal, (1965).   Google Scholar

[15]

Ya. B. Lopatinskii, The mixed Cauchy-Dirichlet type problem for equations of hyperbolic type,, \emph{Dopovfdf Akad. Nauk Ukrai''n. RSR Ser. A}, 668 (1970), 592.   Google Scholar

[16]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I,, \emph{Trans. Amer. Math. Soc.}, 176 (1973), 141.   Google Scholar

[17]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II,, \emph{Trans. Amer. Math. Soc.}, 198 (1974), 155.   Google Scholar

[18]

M. Petcu and R. Temam, The one-dimensional shallow water equations with transparent boundary conditions,, \emph{Math. Meth. Appl. Sci.}, (2011).   Google Scholar

[19]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems,, \emph{Trans. Amer. Math. Soc.}, 189 (1974), 303.   Google Scholar

[20]

A. Rousseau, R. Temam, and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case,, \emph{J. Math. Pures Appl.}, 89 (2008), 297.  doi: 10.1016/j.matpur.2007.12.001.  Google Scholar

[21]

S. Smale, Smooth solutions of the heat and wave equations,, \emph{Comment. Math. Helv.}, 55 (1980), 1.  doi: 10.1007/BF02566671.  Google Scholar

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation,, \emph{Adv. Diff. Equations}, 15 (2010), 1001.   Google Scholar

[23]

M. E. Taylor, Partial Differential Equations. III Nonlinear Equations,, vol. 117, (1997).   Google Scholar

[24]

R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations,, \emph{J. Differential Equations}, 43 (1982), 73.  doi: 10.1016/0022-0396(82)90075-4.  Google Scholar

[25]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001).   Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Series in Pure and Applied Mathematics, 65 (1975).   Google Scholar

[2]

S. Benzoni-Gavage and D. Serre, Multi-dimensional Hyperbolic Partial Differential Equations,, Oxford University Press, (2007).   Google Scholar

[3]

L. Comtet, Advanced Combinatorics,, D. Reidel, (1978).   Google Scholar

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations,, North-Holland Publishing Co., (1982).   Google Scholar

[5]

Faà F.di Bruno, Note sur une nouvelle formule de calcul differentiel,, vol. 1, (1857).   Google Scholar

[6]

K. O. Friedrichs, The identity of weak and strong extensions of differential operator,, Trans. Amer. Math. Soc. \textbf{55} (1944), 55 (1944), 132.   Google Scholar

[7]

Loukas Grafakos, Classical Fourier Analysis,, Second ed., (2008).   Google Scholar

[8]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Monographs and Studies in Mathematics, (1985).   Google Scholar

[9]

A. Huang, M. Petcu, and R. Temam, The one-dimensional supercritical shallow-water equations with topography,, \emph{Annals of the University of Bucharest (Mathematical Series)}, 2 (LX) (2011), 63.   Google Scholar

[10]

A. Huang, M. Petcu, and R. Temam, The nonlinear 2d supercritical inviscid shallow water equations in a rectangle,, submitted., ().   Google Scholar

[11]

A. Huang and R. Temam, The linearized 2d inviscid shallow water equations in a rectangle: boundary conditions and well-posedness,, \emph{Archive for Rational Mechanics and Analysis}, 211 (2014), 1027.  doi: 10.1007/s00205-013-0702-0.  Google Scholar

[12]

A. Huang and R. Temam, The linear hyperbolic initial boundary value problems in a domain with corners,, accepted by \emph{Discrete and Continuous Dynamical System - Series B}, ().   Google Scholar

[13]

H.-O. Kreiss, Initial boundary value problems for hyperbolic systems,, \emph{Comm. Pure Appl. Math}, 23 (1970), 277.   Google Scholar

[14]

J. L. Lions, Problèmes aux Limites dans les Équations aux Dérivées Partielles, Montréal,, Presses de l'Universit\'e de Montr\'eal, (1965).   Google Scholar

[15]

Ya. B. Lopatinskii, The mixed Cauchy-Dirichlet type problem for equations of hyperbolic type,, \emph{Dopovfdf Akad. Nauk Ukrai''n. RSR Ser. A}, 668 (1970), 592.   Google Scholar

[16]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. I,, \emph{Trans. Amer. Math. Soc.}, 176 (1973), 141.   Google Scholar

[17]

Stanley Osher, Initial-boundary value problems for hyperbolic systems in regions with corners. II,, \emph{Trans. Amer. Math. Soc.}, 198 (1974), 155.   Google Scholar

[18]

M. Petcu and R. Temam, The one-dimensional shallow water equations with transparent boundary conditions,, \emph{Math. Meth. Appl. Sci.}, (2011).   Google Scholar

[19]

J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems,, \emph{Trans. Amer. Math. Soc.}, 189 (1974), 303.   Google Scholar

[20]

A. Rousseau, R. Temam, and J. Tribbia, The 3D Primitive Equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case,, \emph{J. Math. Pures Appl.}, 89 (2008), 297.  doi: 10.1016/j.matpur.2007.12.001.  Google Scholar

[21]

S. Smale, Smooth solutions of the heat and wave equations,, \emph{Comment. Math. Helv.}, 55 (1980), 1.  doi: 10.1007/BF02566671.  Google Scholar

[22]

J.-C. Saut and R. Temam, An initial boundary-value problem for the Zakharov-Kuznetsov equation,, \emph{Adv. Diff. Equations}, 15 (2010), 1001.   Google Scholar

[23]

M. E. Taylor, Partial Differential Equations. III Nonlinear Equations,, vol. 117, (1997).   Google Scholar

[24]

R. Temam, Behaviour at time $t=0$ of the solutions of semilinear evolution equations,, \emph{J. Differential Equations}, 43 (1982), 73.  doi: 10.1016/0022-0396(82)90075-4.  Google Scholar

[25]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis,, AMS Chelsea Publishing, (2001).   Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[18]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]