Citation: |
[1] |
A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078. |
[2] |
V. Benci, D. Fortunato and L. Pisani, Solitons like solutions of a Lorentz invariant equation in dimension $3$, Rev. Math. Phys., 10 (1998), 315-344.doi: 10.1142/S0129055X98000100. |
[3] |
L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal., 24 (1995), 1639-1648.doi: 10.1016/0362-546X(94)E0054-K. |
[4] |
S. Cingolani and M. Degiovanni, Nontrivial solutions for $p$-Laplace equations with right hand side having $p$-linear growth at infinity, Comm. Partial Differential Equations, 30 (2005), 1191-1203.doi: 10.1080/03605300500257594. |
[5] |
G. M. Figueiredo, Existence of positive solutions for a class of $(p,q)$-elliptic problems with critical growth on $\mathbbR^N$, J. Math. Anal. Appl., 378 (2011), 507-518.doi: 10.1016/j.jmaa.2011.02.017. |
[6] |
M. Filippakis, L. Gasiński and N. S. Papageorgiou, On the existence of positive solutions for hemivariational inequalities driven by the $p$-Laplacian, J. Global Optim., 31 (2005), 173-189.doi: 10.1007/s10898-003-5444-3. |
[7] |
J. García Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2 (2000), 385-404.doi: 10.1142/S0219199700000190. |
[8] |
L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Chapman and Hall/ CRC Press, Boca Raton, FL, 2005. |
[9] |
L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis," Chapman and Hall/ CRC Press, Boca Raton, FL, 2006. |
[10] |
L. Gasiński and N. S. Papageorgiou, Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential, Set-Valued Var. Anal., 20 (2012), 417-443.doi: 10.1007/s11228-011-0198-4. |
[11] |
L. Gasiński and N. S. Papageorgiou, Nonhomogeneous nonlinear Dirichlet problems with a $p$-superlinear reaction, Abstr. Appl. Anal., 2012 (2012), 1-28, Article ID 918271.doi: 10.1155/2012/918271. |
[12] |
Z. Guo and Z. Zhang, $W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286 (2003), 32-50.doi: 10.1016/S0022-247X(03)00282-8. |
[13] |
S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin, Tôhoku Math. J., 62 (2010), 137-162.doi: 10.2748/tmj/1270041030. |
[14] |
O. A. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Vol. 46 of Mathematics in Science and Engineering, Academic Press, New York, 1968. |
[15] |
G. M. Lieberman, The natural generalizations of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.doi: 10.1080/03605309108820761. |
[16] |
S.-J. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185 (2002), 200-224.doi: 10.1006/jdeq.2001.4167. |
[17] |
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.doi: 10.1016/j.na.2010.02.037. |
[18] |
G. Li and G. Zhang, Multiple solutions for the p&g-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed., 29B (2009), 903-918.doi: 10.1016/S0252-9602(09)60089-8. |
[19] |
E. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problems via the cohomological index, Nonlinear Anal., 71 (2009), 3654-3660.doi: 10.1016/j.na.2009.02.013. |
[20] |
P. Pucci and J. Serrin, "The Maximum Principle," Birkhäuser Verlag, Basel, 2007. |
[21] |
M. Sun, Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance, J. Math. Anal. Appl., 386 (2012), 661-668.doi: 10.1016/j.jmaa.2011.08.030. |
[22] |
J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.doi: 10.1007/BF01449041. |