\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A pair of positive solutions for $(p,q)$-equations with combined nonlinearities

Abstract / Introduction Related Papers Cited by
  • We consider a parametric nonlinear Dirichlet problem driven by the $(p,q)$-differential operator, with a reaction consisting of a ``concave'' term perturbed by a $(p-1)$-superlinear perturbation, which need not satisfy the Ambrosetti-Rabinowitz condition (problem with combined or competing nonlinearities). Using variational methods we show that for small values of the parameter the problem has at least two nontrivial positive smooth solutions.
    Mathematics Subject Classification: Primary: 35J20; Secondary: 35J60, 35J92.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.

    [2]

    V. Benci, D. Fortunato and L. Pisani, Solitons like solutions of a Lorentz invariant equation in dimension $3$, Rev. Math. Phys., 10 (1998), 315-344.doi: 10.1142/S0129055X98000100.

    [3]

    L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents, Nonlinear Anal., 24 (1995), 1639-1648.doi: 10.1016/0362-546X(94)E0054-K.

    [4]

    S. Cingolani and M. Degiovanni, Nontrivial solutions for $p$-Laplace equations with right hand side having $p$-linear growth at infinity, Comm. Partial Differential Equations, 30 (2005), 1191-1203.doi: 10.1080/03605300500257594.

    [5]

    G. M. Figueiredo, Existence of positive solutions for a class of $(p,q)$-elliptic problems with critical growth on $\mathbbR^N$, J. Math. Anal. Appl., 378 (2011), 507-518.doi: 10.1016/j.jmaa.2011.02.017.

    [6]

    M. Filippakis, L. Gasiński and N. S. Papageorgiou, On the existence of positive solutions for hemivariational inequalities driven by the $p$-Laplacian, J. Global Optim., 31 (2005), 173-189.doi: 10.1007/s10898-003-5444-3.

    [7]

    J. García Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2 (2000), 385-404.doi: 10.1142/S0219199700000190.

    [8]

    L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems," Chapman and Hall/ CRC Press, Boca Raton, FL, 2005.

    [9]

    L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis," Chapman and Hall/ CRC Press, Boca Raton, FL, 2006.

    [10]

    L. Gasiński and N. S. Papageorgiou, Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential, Set-Valued Var. Anal., 20 (2012), 417-443.doi: 10.1007/s11228-011-0198-4.

    [11]

    L. Gasiński and N. S. Papageorgiou, Nonhomogeneous nonlinear Dirichlet problems with a $p$-superlinear reaction, Abstr. Appl. Anal., 2012 (2012), 1-28, Article ID 918271.doi: 10.1155/2012/918271.

    [12]

    Z. Guo and Z. Zhang, $W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286 (2003), 32-50.doi: 10.1016/S0022-247X(03)00282-8.

    [13]

    S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin, Tôhoku Math. J., 62 (2010), 137-162.doi: 10.2748/tmj/1270041030.

    [14]

    O. A. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations," Vol. 46 of Mathematics in Science and Engineering, Academic Press, New York, 1968.

    [15]

    G. M. Lieberman, The natural generalizations of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), 311-361.doi: 10.1080/03605309108820761.

    [16]

    S.-J. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities, J. Differential Equations, 185 (2002), 200-224.doi: 10.1006/jdeq.2001.4167.

    [17]

    G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.doi: 10.1016/j.na.2010.02.037.

    [18]

    G. Li and G. Zhang, Multiple solutions for the p&g-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed., 29B (2009), 903-918.doi: 10.1016/S0252-9602(09)60089-8.

    [19]

    E. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problems via the cohomological index, Nonlinear Anal., 71 (2009), 3654-3660.doi: 10.1016/j.na.2009.02.013.

    [20]

    P. Pucci and J. Serrin, "The Maximum Principle," Birkhäuser Verlag, Basel, 2007.

    [21]

    M. Sun, Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance, J. Math. Anal. Appl., 386 (2012), 661-668.doi: 10.1016/j.jmaa.2011.08.030.

    [22]

    J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.doi: 10.1007/BF01449041.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(61) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return