January  2014, 13(1): 203-215. doi: 10.3934/cpaa.2014.13.203

A pair of positive solutions for $(p,q)$-equations with combined nonlinearities

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Łojasiewicza 6, 30-348 Kraków

2. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  October 2012 Revised  April 2013 Published  July 2013

We consider a parametric nonlinear Dirichlet problem driven by the $(p,q)$-differential operator, with a reaction consisting of a ``concave'' term perturbed by a $(p-1)$-superlinear perturbation, which need not satisfy the Ambrosetti-Rabinowitz condition (problem with combined or competing nonlinearities). Using variational methods we show that for small values of the parameter the problem has at least two nontrivial positive smooth solutions.
Citation: Leszek Gasiński, Nikolaos S. Papageorgiou. A pair of positive solutions for $(p,q)$-equations with combined nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (1) : 203-215. doi: 10.3934/cpaa.2014.13.203
References:
[1]

A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

V. Benci, D. Fortunato and L. Pisani, Solitons like solutions of a Lorentz invariant equation in dimension $3$,, Rev. Math. Phys., 10 (1998), 315.  doi: 10.1142/S0129055X98000100.  Google Scholar

[3]

L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents,, Nonlinear Anal., 24 (1995), 1639.  doi: 10.1016/0362-546X(94)E0054-K.  Google Scholar

[4]

S. Cingolani and M. Degiovanni, Nontrivial solutions for $p$-Laplace equations with right hand side having $p$-linear growth at infinity,, Comm. Partial Differential Equations, 30 (2005), 1191.  doi: 10.1080/03605300500257594.  Google Scholar

[5]

G. M. Figueiredo, Existence of positive solutions for a class of $(p,q)$-elliptic problems with critical growth on $\mathbbR^N$,, J. Math. Anal. Appl., 378 (2011), 507.  doi: 10.1016/j.jmaa.2011.02.017.  Google Scholar

[6]

M. Filippakis, L. Gasiński and N. S. Papageorgiou, On the existence of positive solutions for hemivariational inequalities driven by the $p$-Laplacian,, J. Global Optim., 31 (2005), 173.  doi: 10.1007/s10898-003-5444-3.  Google Scholar

[7]

J. García Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations,, Commun. Contemp. Math., 2 (2000), 385.  doi: 10.1142/S0219199700000190.  Google Scholar

[8]

L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Chapman and Hall/ CRC Press, (2005).   Google Scholar

[9]

L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman and Hall/ CRC Press, (2006).   Google Scholar

[10]

L. Gasiński and N. S. Papageorgiou, Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential,, Set-Valued Var. Anal., 20 (2012), 417.  doi: 10.1007/s11228-011-0198-4.  Google Scholar

[11]

L. Gasiński and N. S. Papageorgiou, Nonhomogeneous nonlinear Dirichlet problems with a $p$-superlinear reaction,, Abstr. Appl. Anal., 2012 (2012), 1.  doi: 10.1155/2012/918271.  Google Scholar

[12]

Z. Guo and Z. Zhang, $W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations,, J. Math. Anal. Appl., 286 (2003), 32.  doi: 10.1016/S0022-247X(03)00282-8.  Google Scholar

[13]

S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin,, T\^ohoku Math. J., 62 (2010), 137.  doi: 10.2748/tmj/1270041030.  Google Scholar

[14]

O. A. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations,", Vol. 46 of Mathematics in Science and Engineering, (1968).   Google Scholar

[15]

G. M. Lieberman, The natural generalizations of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations,, Comm. Partial Differential Equations, 16 (1991), 311.  doi: 10.1080/03605309108820761.  Google Scholar

[16]

S.-J. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities,, J. Differential Equations, 185 (2002), 200.  doi: 10.1006/jdeq.2001.4167.  Google Scholar

[17]

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.  doi: 10.1016/j.na.2010.02.037.  Google Scholar

[18]

G. Li and G. Zhang, Multiple solutions for the p&g-Laplacian problem with critical exponent,, Acta Math. Sci. Ser. B Engl. Ed., 29B (2009), 903.  doi: 10.1016/S0252-9602(09)60089-8.  Google Scholar

[19]

E. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problems via the cohomological index,, Nonlinear Anal., 71 (2009), 3654.  doi: 10.1016/j.na.2009.02.013.  Google Scholar

[20]

P. Pucci and J. Serrin, "The Maximum Principle,", Birkh{\, (2007).   Google Scholar

[21]

M. Sun, Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance,, J. Math. Anal. Appl., 386 (2012), 661.  doi: 10.1016/j.jmaa.2011.08.030.  Google Scholar

[22]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.  doi: 10.1007/BF01449041.  Google Scholar

show all references

References:
[1]

A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems,, J. Funct. Anal., 122 (1994), 519.  doi: 10.1006/jfan.1994.1078.  Google Scholar

[2]

V. Benci, D. Fortunato and L. Pisani, Solitons like solutions of a Lorentz invariant equation in dimension $3$,, Rev. Math. Phys., 10 (1998), 315.  doi: 10.1142/S0129055X98000100.  Google Scholar

[3]

L. Boccardo, M. Escobedo and I. Peral, A Dirichlet problem involving critical exponents,, Nonlinear Anal., 24 (1995), 1639.  doi: 10.1016/0362-546X(94)E0054-K.  Google Scholar

[4]

S. Cingolani and M. Degiovanni, Nontrivial solutions for $p$-Laplace equations with right hand side having $p$-linear growth at infinity,, Comm. Partial Differential Equations, 30 (2005), 1191.  doi: 10.1080/03605300500257594.  Google Scholar

[5]

G. M. Figueiredo, Existence of positive solutions for a class of $(p,q)$-elliptic problems with critical growth on $\mathbbR^N$,, J. Math. Anal. Appl., 378 (2011), 507.  doi: 10.1016/j.jmaa.2011.02.017.  Google Scholar

[6]

M. Filippakis, L. Gasiński and N. S. Papageorgiou, On the existence of positive solutions for hemivariational inequalities driven by the $p$-Laplacian,, J. Global Optim., 31 (2005), 173.  doi: 10.1007/s10898-003-5444-3.  Google Scholar

[7]

J. García Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations,, Commun. Contemp. Math., 2 (2000), 385.  doi: 10.1142/S0219199700000190.  Google Scholar

[8]

L. Gasiński and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Chapman and Hall/ CRC Press, (2005).   Google Scholar

[9]

L. Gasiński and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman and Hall/ CRC Press, (2006).   Google Scholar

[10]

L. Gasiński and N. S. Papageorgiou, Multiple solutions for nonlinear coercive problems with a nonhomogeneous differential operator and a nonsmooth potential,, Set-Valued Var. Anal., 20 (2012), 417.  doi: 10.1007/s11228-011-0198-4.  Google Scholar

[11]

L. Gasiński and N. S. Papageorgiou, Nonhomogeneous nonlinear Dirichlet problems with a $p$-superlinear reaction,, Abstr. Appl. Anal., 2012 (2012), 1.  doi: 10.1155/2012/918271.  Google Scholar

[12]

Z. Guo and Z. Zhang, $W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations,, J. Math. Anal. Appl., 286 (2003), 32.  doi: 10.1016/S0022-247X(03)00282-8.  Google Scholar

[13]

S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin,, T\^ohoku Math. J., 62 (2010), 137.  doi: 10.2748/tmj/1270041030.  Google Scholar

[14]

O. A. Ladyzhenskaya and N. Uraltseva, "Linear and Quasilinear Elliptic Equations,", Vol. 46 of Mathematics in Science and Engineering, (1968).   Google Scholar

[15]

G. M. Lieberman, The natural generalizations of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations,, Comm. Partial Differential Equations, 16 (1991), 311.  doi: 10.1080/03605309108820761.  Google Scholar

[16]

S.-J. Li, S. Wu and H.-S. Zhou, Solutions to semilinear elliptic problems with combined nonlinearities,, J. Differential Equations, 185 (2002), 200.  doi: 10.1006/jdeq.2001.4167.  Google Scholar

[17]

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition,, Nonlinear Anal., 72 (2010), 4602.  doi: 10.1016/j.na.2010.02.037.  Google Scholar

[18]

G. Li and G. Zhang, Multiple solutions for the p&g-Laplacian problem with critical exponent,, Acta Math. Sci. Ser. B Engl. Ed., 29B (2009), 903.  doi: 10.1016/S0252-9602(09)60089-8.  Google Scholar

[19]

E. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problems via the cohomological index,, Nonlinear Anal., 71 (2009), 3654.  doi: 10.1016/j.na.2009.02.013.  Google Scholar

[20]

P. Pucci and J. Serrin, "The Maximum Principle,", Birkh{\, (2007).   Google Scholar

[21]

M. Sun, Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance,, J. Math. Anal. Appl., 386 (2012), 661.  doi: 10.1016/j.jmaa.2011.08.030.  Google Scholar

[22]

J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations,, Appl. Math. Optim., 12 (1984), 191.  doi: 10.1007/BF01449041.  Google Scholar

[1]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[2]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[3]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[4]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[5]

Shouchuan Hu, Nikolas S. Papageorgiou. Positive solutions for resonant (p, q)-equations with concave terms. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2639-2656. doi: 10.3934/cpaa.2018125

[6]

Shanming Ji, Jingxue Yin, Yutian Li. Positive periodic solutions of the weighted $p$-Laplacian with nonlinear sources. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2411-2439. doi: 10.3934/dcds.2018100

[7]

Tsung-Fang Wu. Multiplicity of positive solutions for a semilinear elliptic equation in $R_+^N$ with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1675-1696. doi: 10.3934/cpaa.2010.9.1675

[8]

Hugo Beirão da Veiga, Francesca Crispo. On the global regularity for nonlinear systems of the $p$-Laplacian type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1173-1191. doi: 10.3934/dcdss.2013.6.1173

[9]

Huijiang Zhao, Yinchuan Zhao. Convergence to strong nonlinear rarefaction waves for global smooth solutions of $p-$system with relaxation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1243-1262. doi: 10.3934/dcds.2003.9.1243

[10]

E. N. Dancer, Zhitao Zhang. Critical point, anti-maximum principle and semipositone p-laplacian problems. Conference Publications, 2005, 2005 (Special) : 209-215. doi: 10.3934/proc.2005.2005.209

[11]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[12]

Nikolaos S. Papageorgiou, George Smyrlis. Positive solutions for parametric $p$-Laplacian equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1545-1570. doi: 10.3934/cpaa.2016002

[13]

Friedemann Brock, Leonelo Iturriaga, Justino Sánchez, Pedro Ubilla. Existence of positive solutions for $p$--Laplacian problems with weights. Communications on Pure & Applied Analysis, 2006, 5 (4) : 941-952. doi: 10.3934/cpaa.2006.5.941

[14]

Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055

[15]

Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$-equations at resonance. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2037-2060. doi: 10.3934/dcds.2014.34.2037

[16]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[17]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[18]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure & Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[19]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[20]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]