\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An extension of the Fitzpatrick theory

Abstract Related Papers Cited by
  • In the seminal work [MR 1009594], Fitzpatrick proved that for any maximal monotone operator $\alpha: V\to {\mathcal P}(V')$ ($V$ being a real Banach space) there exists a lower semicontinuous, convex representative function $f_\alpha: V \times V'\to R\cup \{+\infty\}$ such that \begin{eqnarray} f_\alpha(v,v') \ge \langle v',v\rangle \quad\;\forall (v,v'), \qquad\quad f_\alpha(v,v') = \langle v',v\rangle \;\;\Leftrightarrow\;\;\; v'\in \alpha(v). \end{eqnarray}
    Here we assume that $\alpha_v$ is a maximal monotone operator for any $v\in V$, and extend the Fitzpatrick theory to provide a new variational formulation for either stationary or evolutionary (nonmonotone) inclusions of the form $\alpha_v(v) \ni v'$. For any $v'\in V'$, we prove existence of a solution via the classical minimax theorem of Ky Fan. Applications include stationary and evolutionary pseudo-monotone operators, and variational inequalities.
    Mathematics Subject Classification: 35K60, 47H05, 49J40, 58E.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Allen, Variational inequalities, complementarity problems, and duality theorems, J. Math. Anal. Appl., 58 (1977), 110.

    [2]

    J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley and Sons, New York, 1984.

    [3]

    G. Auchmuty, Saddle-points and existence-uniqueness for evolution equations, Differential Integral Equations, 6 (1993), 1161-117.

    [4]

    C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley and Sons, Chichester, 1984.

    [5]

    V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

    [6]

    H. H. Bauschke and X. Wang, The kernel average for two convex functions and its applications to the extension and representation of monotone operators, Trans. Amer. Math. Soc., 361 (2009), 5947-5965.doi: 10.1090/S0002-9947-09-04698-4.

    [7]

    H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175.

    [8]

    H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

    [9]

    H. Brezis and I. Ekeland, Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps et II. Le cas dépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and ibid. 1197-1198.

    [10]

    F. Browder, Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Proc. Sympos. Pure Math., XVIII Part II. A.M.S., Providence, 1976.

    [11]

    F. Browder and P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Functional Analysis, 11 (1972), 251-294.

    [12]

    M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws, J. Convex Anal., 15 (2008), 87-104.

    [13]

    R. S. Burachik and B. F. Svaiter, Maximal monotone operators, convex functions, and a special family of enlargements, Set-Valued Analysis, 10 (2002), 297-316.doi: 10.1023/A:1020639314056.

    [14]

    R. S. Burachik and B. F. Svaiter, Maximal monotonicity, conjugation and the duality product, Proc. Amer. Math. Soc., 131 (2003), 2379-2383.doi: 10.1090/S0002-9939-03-07053-9.

    [15]

    I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnelles, Dunod Gauthier-Villars, Paris, 1974.

    [16]

    K. Fan, A generalization of Tychonoff's theorem, Math. Ann., 142 (1961), 305-310.

    [17]

    K. Fan, A minimax inequality and applications. Inequalities, III, In: Proc. Third Sympos., Univ. California, Los Angeles 1969, pp. 103-113. Academic Press, New York, 1972.

    [18]

    W. Fenchel, Convex Cones, Sets, and Functions, Princeton Univ., 1953.

    [19]

    S. Fitzpatrick, Representing monotone operators by convex functions, in Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988.

    [20]

    N. Ghoussoub, Selfdual Partial Differential Systems and their Variational Principles, Springer, 2008.

    [21]

    N. Ghoussoub, A variational theory for monotone vector fields, J. Fixed Point Theory Appl., 4 (2008), 107-135.doi: 10.1007/s11784-008-0083-4.

    [22]

    N. Ghoussoub and L. Tzou, A variational principle for gradient flows, Math. Ann., 330, (2004) 519-549.doi: 10.1007/s00208-004-0558-6.

    [23]

    J.-B. Hiriart-Urruty and C. Lemarechal, Fundamentals of Convex Analysis, Springer, Berlin, 2001.doi: 10.1007/978-3-642-56468-0.

    [24]

    Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Kluwer, Dordrecht, 1997.doi: 10.1016/0362-546X(85)90097-5.

    [25]

    B. Knaster, C. Kuratowski and S. Mazurkievicz, Ein Beweis des Fixpunktsatzes für $n$-dimensionale Simplexe, Fund. Math., 14 (1929), 132-138.

    [26]

    E. Krauss, A representation of arbitrary maximal monotone operators via subgradients of skew-symmetric saddle functions, Nonlinear Anal., 9 (1985), 1381-1399.

    [27]

    J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107.

    [28]

    J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

    [29]

    J.-E. Martinez-Legaz and M. Théra, A convex representation of maximal monotone operators, J. Nonlinear Convex Anal., 2 (2001), 243-247.

    [30]

    J.-E. Martinez-Legaz and B. F. Svaiter, Monotone operators representable by l.s.c. convex functions, Set-Valued Anal., 13 (2005), 21-46.doi: 10.1007/s11228-004-4170-4.

    [31]

    J.-E. Martinez-Legaz and B. F. Svaiter, Minimal convex functions bounded below by the duality product, Proc. Amer. Math. Soc., 136 (2008), 873-878.doi: 10.1090/S0002-9939-07-09176-9.

    [32]

    G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), 341-346.

    [33]

    B. Nayroles, Deux théorèmes de minimum pour certains systèmes dissipatifs, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038.

    [34]

    J.-P. Penot, A representation of maximal monotone operators by closed convex functions and its impact on calculus rules, C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858.doi: 10.1016/j.crma.2004.03.017.

    [35]

    J.-P. Penot, The relevance of convex analysis for the study of monotonicity, Nonlinear Anal., 58 (2004), 855-871.doi: 10.1016/j.na.2004.05.018.

    [36]

    T. Roche, R. Rossi and U. Stefanelli, Stability results for doubly nonlinear differential inclusions by variational convergence, SIAM J. Control Optim., in press, 2014.doi: 10.1137/130909391.

    [37]

    R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1969.

    [38]

    T. Roubíček, Direct method for parabolic problems, Adv. Math. Sci. Appl., 10 (2000), 57-65.

    [39]

    T. Roubíček, Nonlinear Partial Differential Equations with Applications, second edition, Birkhäuser, Basel, 2013.doi: 10.1007/978-3-0348-0513-1.

    [40]

    B. F. Svaiter, Fixed points in the family of convex representations of a maximal monotone operator, Proc. Amer. Math. Soc., 131 (2003), 3851-3859.doi: 10.1090/S0002-9939-03-07083-7.

    [41]

    A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone operators, Adv. Math. Sci. Appl., 18 (2008), 633-650.

    [42]

    A. Visintin, Variational formulation and structural stability of monotone equations, Calc. Var. Partial Differential Equations, 47 (2013), 273-317.doi: 10.1007/s00526-012-0519-y.

    [43]

    A. Visintin, Scale-transformations and homogenization of maximal monotone relations, with applications, Asymptotic Analysis, 82 (2013), 233-270.

    [44]

    A. Visintin, Weak structural stability of pseudo-monotone equations, in press.

    [45]

    E. Zeidler, Nonlinear Functional Analysis and its Applications. Vol. II/B: Nonlinear Monotone Operators, Springer, New York, 1990.doi: 10.1007/978-1-4612-0985-0.

    [46]

    E. Zeidler, Nonlinear Functional Analysis and its Applications. Vol. IV: Applications to Mathematical Physics, Springer, New York, 1988.doi: 10.1007/978-1-4612-4566-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(175) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return