September  2014, 13(5): 2059-2093. doi: 10.3934/cpaa.2014.13.2059

Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit

1. 

Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetniy 19, Moscow 127994, GSP-4, Russian Federation

2. 

Department of Mathematics, University of Surrey, Guildford, GU2 7XH

Received  November 2012 Revised  November 2013 Published  June 2014

We apply the dynamical approach to the study of the second order semi-linear elliptic boundary value problem in a cylindrical domain with a small parameter $\varepsilon$ at the second derivative with respect to the variable $t$ corresponding to the axis of the cylinder. We prove that, under natural assumptions on the nonlinear interaction function $f$ and the external forces $g(t)$, this problem possesses the uniform attractor $\mathcal A_\varepsilon$ and that these attractors tend as $\varepsilon \to 0$ to the attractor $\mathcal A_0$ of the limit parabolic equation. Moreover, in case where the limit attractor $\mathcal A_0$ is regular, we give the detailed description of the structure of the uniform attractor $\mathcal A_\varepsilon$, if $\varepsilon>0$ is small enough, and estimate the symmetric distance between the attractors $\mathcal A_\varepsilon$ and $\mathcal A_0$.
Citation: Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059
References:
[1]

S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space,, \emph{Comm. Pure Appl. Math.}, l20 (1967), 207.   Google Scholar

[2]

A. V. Babin, Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain,, \emph{Russian Acad. Sci. Izv. Math.}, 44 (1995), 207.  doi: 10.1070/IM1995v044n02ABEH001594.  Google Scholar

[3]

A. V. Babin, Inertial manifolds for traveling-wave solutions of reaction-diffusion systems,, \emph{Comm. Pure Appl. Math.}, 48 (1995), 167.  doi: 10.1002/cpa.3160480205.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations,, Nauka, (1989).   Google Scholar

[5]

O. V. Besov, V. P Ilyin and S. M. Nikolskij, Integral Representations of Functions and Embedding Theorems,, M.: Nauka, (1996).   Google Scholar

[6]

À. Calsina, X. Mora and J. Solà-Morales, The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit,, \emph{J. Diff. Eqns.}, 102 (1993), 244.  doi: 10.1006/jdeq.1993.1030.  Google Scholar

[7]

À. Calsina, J. Solà-Morales and M. València, Bounded solutions of some nonlinear elliptic equations in cylindrical domains,, \emph{J. Dynam. Diff. Eqns.}, 9 (1997), 343.  doi: 10.1007/BF02227486.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms,, \emph{Sb. Math}, 192 (2001), 11.  doi: 10.1070/SM2001v192n01ABEH000534.  Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, AMS, (2002).   Google Scholar

[10]

G. Dangelmayr, B. Fiedler, K. Kirchgässner and A. Mielke, Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability,, Pitman Research, (1996).   Google Scholar

[11]

M. Efendiev and S. Zelik, The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging,, \emph{Adv. Differential Equations}, 8 (2003), 673.   Google Scholar

[12]

B. Fiedler, A. Scheel and M. I. Vishik, Large patterns of elliptic systems in infinite cylinders,, \emph{J. Math. Pures Appl.}, 77 (1998), 879.  doi: 10.1016/S0021-7824(01)80002-7.  Google Scholar

[13]

A. Yu. Goritskij and M. I. Vishik, Integral manifolds for nonautonomous equation,, \emph{Rend. Accad. Naz. XL, 115 (1997), 106.   Google Scholar

[14]

A. Yu. Goritskij and M. I. Vishik, Local integral manifolds for a nonautonomous parabolic equation,, \emph{Journal of Math. Sci.}, 85 (1997), 2428.  doi: 10.1007/BF02355848.  Google Scholar

[15]

A. Haraux, Systèmes dynamiques dissipatifs et applications,, Masson, (1991).   Google Scholar

[16]

A. Ilyin, Averaging for dissipative dynamical systems with rapidly oscillating righ-hand sides,, \emph{Mat. Sbornik}, 187 (1996), 15.  doi: 10.1070/SM1996v187n05ABEH000126.  Google Scholar

[17]

K. Kirchgässner, Wave-solutions of reversible systems and applications,, \emph{J. Diff. Eqns.}, 45 (1982), 113.  doi: 10.1016/0022-0396(82)90058-4.  Google Scholar

[18]

O. A. Ladyzhenskaya, O. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type,, Translated from Russian, (1967).   Google Scholar

[19]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982).   Google Scholar

[20]

A. Mielke, Essential manifolds for an elliptic problem in an infinite strip,, \emph{J. Diff. Eqns.}, 110 (1994), 322.  doi: 10.1006/jdeq.1994.1070.  Google Scholar

[21]

A. Milke and S. Zelik, Infinite-dimensional trajectory attractors of elliptic boundary value problems in cylindrical domains,, \emph{Uspekhi Mat. Nauk}, 57 (2002), 119.  doi: 10.1070/RM2002v057n04ABEH000550.  Google Scholar

[22]

D. Peterhof, B. Sandstede and A. Scheel, Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders,, \emph{J. Diff. Eqns}, 140 (1997), 266.  doi: 10.1006/jdeq.1997.3303.  Google Scholar

[23]

A. Scheel, Existence of fast travelling waves for some parabolic equations: a dynamical systems approach,, \emph{J. Dyn. Diff. Eqns.}, 8 (1996), 469.  doi: 10.1007/BF02218843.  Google Scholar

[24]

B. W. Schulze, M. I. Vishik, I. Witt and S. V. Zelik, The trajectory attractor for a nonlinear elliptic system in a cylindrical domain with piecewise smooth boundary,, \emph{Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.}, 23 (1999), 125.   Google Scholar

[25]

A. Shapoval, Attractors of nonlinear elliptic equations with a small parameter,, \emph{Differ. Uravn.}, 37 (2001), 1239.  doi: 10.1023/A:1012582031204.  Google Scholar

[26]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[27]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978).   Google Scholar

[28]

M. I. Vishik and S. V. Zelik, The trajectory attractor for a nonlinear elliptic system in a cylindrical domain,, \emph{Math. Sbornik}, 187 (1996), 1755.  doi: 10.1070/SM1996v187n12ABEH000177.  Google Scholar

[29]

M. I. Vishik and S. V. Zelik, The regular attractor for a nonlinear elliptic system in a cylindrical domain,, \emph{Math. Sbornik}, 190 (1999), 23.  doi: 10.1070/SM1999v190n06ABEH000411.  Google Scholar

[30]

M. Vishik, S. Zelik and V. Chepyzhov, Regular attractors and nonautonomous perturbations of them,, \emph{Mat. Sb.}, 204 (2013), 3.  doi: 10.1070/SM2013v204n01ABEH004290.  Google Scholar

[31]

S. Zelik, The dynamics of fast nonautonomous travelling waves and homogenization,, in \emph{Proc. of Conf. in Honor of R. Temam 60th annivesary, (2000), 7.   Google Scholar

[32]

S. Zelik, Global averaging and parametric resonances in damped semilinear wave equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 136 (2006), 1053.  doi: 10.1017/S0308210500004881.  Google Scholar

show all references

References:
[1]

S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space,, \emph{Comm. Pure Appl. Math.}, l20 (1967), 207.   Google Scholar

[2]

A. V. Babin, Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain,, \emph{Russian Acad. Sci. Izv. Math.}, 44 (1995), 207.  doi: 10.1070/IM1995v044n02ABEH001594.  Google Scholar

[3]

A. V. Babin, Inertial manifolds for traveling-wave solutions of reaction-diffusion systems,, \emph{Comm. Pure Appl. Math.}, 48 (1995), 167.  doi: 10.1002/cpa.3160480205.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations,, Nauka, (1989).   Google Scholar

[5]

O. V. Besov, V. P Ilyin and S. M. Nikolskij, Integral Representations of Functions and Embedding Theorems,, M.: Nauka, (1996).   Google Scholar

[6]

À. Calsina, X. Mora and J. Solà-Morales, The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit,, \emph{J. Diff. Eqns.}, 102 (1993), 244.  doi: 10.1006/jdeq.1993.1030.  Google Scholar

[7]

À. Calsina, J. Solà-Morales and M. València, Bounded solutions of some nonlinear elliptic equations in cylindrical domains,, \emph{J. Dynam. Diff. Eqns.}, 9 (1997), 343.  doi: 10.1007/BF02227486.  Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms,, \emph{Sb. Math}, 192 (2001), 11.  doi: 10.1070/SM2001v192n01ABEH000534.  Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, AMS, (2002).   Google Scholar

[10]

G. Dangelmayr, B. Fiedler, K. Kirchgässner and A. Mielke, Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability,, Pitman Research, (1996).   Google Scholar

[11]

M. Efendiev and S. Zelik, The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging,, \emph{Adv. Differential Equations}, 8 (2003), 673.   Google Scholar

[12]

B. Fiedler, A. Scheel and M. I. Vishik, Large patterns of elliptic systems in infinite cylinders,, \emph{J. Math. Pures Appl.}, 77 (1998), 879.  doi: 10.1016/S0021-7824(01)80002-7.  Google Scholar

[13]

A. Yu. Goritskij and M. I. Vishik, Integral manifolds for nonautonomous equation,, \emph{Rend. Accad. Naz. XL, 115 (1997), 106.   Google Scholar

[14]

A. Yu. Goritskij and M. I. Vishik, Local integral manifolds for a nonautonomous parabolic equation,, \emph{Journal of Math. Sci.}, 85 (1997), 2428.  doi: 10.1007/BF02355848.  Google Scholar

[15]

A. Haraux, Systèmes dynamiques dissipatifs et applications,, Masson, (1991).   Google Scholar

[16]

A. Ilyin, Averaging for dissipative dynamical systems with rapidly oscillating righ-hand sides,, \emph{Mat. Sbornik}, 187 (1996), 15.  doi: 10.1070/SM1996v187n05ABEH000126.  Google Scholar

[17]

K. Kirchgässner, Wave-solutions of reversible systems and applications,, \emph{J. Diff. Eqns.}, 45 (1982), 113.  doi: 10.1016/0022-0396(82)90058-4.  Google Scholar

[18]

O. A. Ladyzhenskaya, O. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type,, Translated from Russian, (1967).   Google Scholar

[19]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982).   Google Scholar

[20]

A. Mielke, Essential manifolds for an elliptic problem in an infinite strip,, \emph{J. Diff. Eqns.}, 110 (1994), 322.  doi: 10.1006/jdeq.1994.1070.  Google Scholar

[21]

A. Milke and S. Zelik, Infinite-dimensional trajectory attractors of elliptic boundary value problems in cylindrical domains,, \emph{Uspekhi Mat. Nauk}, 57 (2002), 119.  doi: 10.1070/RM2002v057n04ABEH000550.  Google Scholar

[22]

D. Peterhof, B. Sandstede and A. Scheel, Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders,, \emph{J. Diff. Eqns}, 140 (1997), 266.  doi: 10.1006/jdeq.1997.3303.  Google Scholar

[23]

A. Scheel, Existence of fast travelling waves for some parabolic equations: a dynamical systems approach,, \emph{J. Dyn. Diff. Eqns.}, 8 (1996), 469.  doi: 10.1007/BF02218843.  Google Scholar

[24]

B. W. Schulze, M. I. Vishik, I. Witt and S. V. Zelik, The trajectory attractor for a nonlinear elliptic system in a cylindrical domain with piecewise smooth boundary,, \emph{Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.}, 23 (1999), 125.   Google Scholar

[25]

A. Shapoval, Attractors of nonlinear elliptic equations with a small parameter,, \emph{Differ. Uravn.}, 37 (2001), 1239.  doi: 10.1023/A:1012582031204.  Google Scholar

[26]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[27]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978).   Google Scholar

[28]

M. I. Vishik and S. V. Zelik, The trajectory attractor for a nonlinear elliptic system in a cylindrical domain,, \emph{Math. Sbornik}, 187 (1996), 1755.  doi: 10.1070/SM1996v187n12ABEH000177.  Google Scholar

[29]

M. I. Vishik and S. V. Zelik, The regular attractor for a nonlinear elliptic system in a cylindrical domain,, \emph{Math. Sbornik}, 190 (1999), 23.  doi: 10.1070/SM1999v190n06ABEH000411.  Google Scholar

[30]

M. Vishik, S. Zelik and V. Chepyzhov, Regular attractors and nonautonomous perturbations of them,, \emph{Mat. Sb.}, 204 (2013), 3.  doi: 10.1070/SM2013v204n01ABEH004290.  Google Scholar

[31]

S. Zelik, The dynamics of fast nonautonomous travelling waves and homogenization,, in \emph{Proc. of Conf. in Honor of R. Temam 60th annivesary, (2000), 7.   Google Scholar

[32]

S. Zelik, Global averaging and parametric resonances in damped semilinear wave equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 136 (2006), 1053.  doi: 10.1017/S0308210500004881.  Google Scholar

[1]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[7]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[16]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]