September  2014, 13(5): 2059-2093. doi: 10.3934/cpaa.2014.13.2059

Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit

1. 

Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetniy 19, Moscow 127994, GSP-4, Russian Federation

2. 

Department of Mathematics, University of Surrey, Guildford, GU2 7XH

Received  November 2012 Revised  November 2013 Published  June 2014

We apply the dynamical approach to the study of the second order semi-linear elliptic boundary value problem in a cylindrical domain with a small parameter $\varepsilon$ at the second derivative with respect to the variable $t$ corresponding to the axis of the cylinder. We prove that, under natural assumptions on the nonlinear interaction function $f$ and the external forces $g(t)$, this problem possesses the uniform attractor $\mathcal A_\varepsilon$ and that these attractors tend as $\varepsilon \to 0$ to the attractor $\mathcal A_0$ of the limit parabolic equation. Moreover, in case where the limit attractor $\mathcal A_0$ is regular, we give the detailed description of the structure of the uniform attractor $\mathcal A_\varepsilon$, if $\varepsilon>0$ is small enough, and estimate the symmetric distance between the attractors $\mathcal A_\varepsilon$ and $\mathcal A_0$.
Citation: Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059
References:
[1]

S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space,, \emph{Comm. Pure Appl. Math.}, l20 (1967), 207. Google Scholar

[2]

A. V. Babin, Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain,, \emph{Russian Acad. Sci. Izv. Math.}, 44 (1995), 207. doi: 10.1070/IM1995v044n02ABEH001594. Google Scholar

[3]

A. V. Babin, Inertial manifolds for traveling-wave solutions of reaction-diffusion systems,, \emph{Comm. Pure Appl. Math.}, 48 (1995), 167. doi: 10.1002/cpa.3160480205. Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations,, Nauka, (1989). Google Scholar

[5]

O. V. Besov, V. P Ilyin and S. M. Nikolskij, Integral Representations of Functions and Embedding Theorems,, M.: Nauka, (1996). Google Scholar

[6]

À. Calsina, X. Mora and J. Solà-Morales, The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit,, \emph{J. Diff. Eqns.}, 102 (1993), 244. doi: 10.1006/jdeq.1993.1030. Google Scholar

[7]

À. Calsina, J. Solà-Morales and M. València, Bounded solutions of some nonlinear elliptic equations in cylindrical domains,, \emph{J. Dynam. Diff. Eqns.}, 9 (1997), 343. doi: 10.1007/BF02227486. Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms,, \emph{Sb. Math}, 192 (2001), 11. doi: 10.1070/SM2001v192n01ABEH000534. Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, AMS, (2002). Google Scholar

[10]

G. Dangelmayr, B. Fiedler, K. Kirchgässner and A. Mielke, Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability,, Pitman Research, (1996). Google Scholar

[11]

M. Efendiev and S. Zelik, The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging,, \emph{Adv. Differential Equations}, 8 (2003), 673. Google Scholar

[12]

B. Fiedler, A. Scheel and M. I. Vishik, Large patterns of elliptic systems in infinite cylinders,, \emph{J. Math. Pures Appl.}, 77 (1998), 879. doi: 10.1016/S0021-7824(01)80002-7. Google Scholar

[13]

A. Yu. Goritskij and M. I. Vishik, Integral manifolds for nonautonomous equation,, \emph{Rend. Accad. Naz. XL, 115 (1997), 106. Google Scholar

[14]

A. Yu. Goritskij and M. I. Vishik, Local integral manifolds for a nonautonomous parabolic equation,, \emph{Journal of Math. Sci.}, 85 (1997), 2428. doi: 10.1007/BF02355848. Google Scholar

[15]

A. Haraux, Systèmes dynamiques dissipatifs et applications,, Masson, (1991). Google Scholar

[16]

A. Ilyin, Averaging for dissipative dynamical systems with rapidly oscillating righ-hand sides,, \emph{Mat. Sbornik}, 187 (1996), 15. doi: 10.1070/SM1996v187n05ABEH000126. Google Scholar

[17]

K. Kirchgässner, Wave-solutions of reversible systems and applications,, \emph{J. Diff. Eqns.}, 45 (1982), 113. doi: 10.1016/0022-0396(82)90058-4. Google Scholar

[18]

O. A. Ladyzhenskaya, O. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type,, Translated from Russian, (1967). Google Scholar

[19]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982). Google Scholar

[20]

A. Mielke, Essential manifolds for an elliptic problem in an infinite strip,, \emph{J. Diff. Eqns.}, 110 (1994), 322. doi: 10.1006/jdeq.1994.1070. Google Scholar

[21]

A. Milke and S. Zelik, Infinite-dimensional trajectory attractors of elliptic boundary value problems in cylindrical domains,, \emph{Uspekhi Mat. Nauk}, 57 (2002), 119. doi: 10.1070/RM2002v057n04ABEH000550. Google Scholar

[22]

D. Peterhof, B. Sandstede and A. Scheel, Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders,, \emph{J. Diff. Eqns}, 140 (1997), 266. doi: 10.1006/jdeq.1997.3303. Google Scholar

[23]

A. Scheel, Existence of fast travelling waves for some parabolic equations: a dynamical systems approach,, \emph{J. Dyn. Diff. Eqns.}, 8 (1996), 469. doi: 10.1007/BF02218843. Google Scholar

[24]

B. W. Schulze, M. I. Vishik, I. Witt and S. V. Zelik, The trajectory attractor for a nonlinear elliptic system in a cylindrical domain with piecewise smooth boundary,, \emph{Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.}, 23 (1999), 125. Google Scholar

[25]

A. Shapoval, Attractors of nonlinear elliptic equations with a small parameter,, \emph{Differ. Uravn.}, 37 (2001), 1239. doi: 10.1023/A:1012582031204. Google Scholar

[26]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[27]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978). Google Scholar

[28]

M. I. Vishik and S. V. Zelik, The trajectory attractor for a nonlinear elliptic system in a cylindrical domain,, \emph{Math. Sbornik}, 187 (1996), 1755. doi: 10.1070/SM1996v187n12ABEH000177. Google Scholar

[29]

M. I. Vishik and S. V. Zelik, The regular attractor for a nonlinear elliptic system in a cylindrical domain,, \emph{Math. Sbornik}, 190 (1999), 23. doi: 10.1070/SM1999v190n06ABEH000411. Google Scholar

[30]

M. Vishik, S. Zelik and V. Chepyzhov, Regular attractors and nonautonomous perturbations of them,, \emph{Mat. Sb.}, 204 (2013), 3. doi: 10.1070/SM2013v204n01ABEH004290. Google Scholar

[31]

S. Zelik, The dynamics of fast nonautonomous travelling waves and homogenization,, in \emph{Proc. of Conf. in Honor of R. Temam 60th annivesary, (2000), 7. Google Scholar

[32]

S. Zelik, Global averaging and parametric resonances in damped semilinear wave equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 136 (2006), 1053. doi: 10.1017/S0308210500004881. Google Scholar

show all references

References:
[1]

S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space,, \emph{Comm. Pure Appl. Math.}, l20 (1967), 207. Google Scholar

[2]

A. V. Babin, Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain,, \emph{Russian Acad. Sci. Izv. Math.}, 44 (1995), 207. doi: 10.1070/IM1995v044n02ABEH001594. Google Scholar

[3]

A. V. Babin, Inertial manifolds for traveling-wave solutions of reaction-diffusion systems,, \emph{Comm. Pure Appl. Math.}, 48 (1995), 167. doi: 10.1002/cpa.3160480205. Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations,, Nauka, (1989). Google Scholar

[5]

O. V. Besov, V. P Ilyin and S. M. Nikolskij, Integral Representations of Functions and Embedding Theorems,, M.: Nauka, (1996). Google Scholar

[6]

À. Calsina, X. Mora and J. Solà-Morales, The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit,, \emph{J. Diff. Eqns.}, 102 (1993), 244. doi: 10.1006/jdeq.1993.1030. Google Scholar

[7]

À. Calsina, J. Solà-Morales and M. València, Bounded solutions of some nonlinear elliptic equations in cylindrical domains,, \emph{J. Dynam. Diff. Eqns.}, 9 (1997), 343. doi: 10.1007/BF02227486. Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms,, \emph{Sb. Math}, 192 (2001), 11. doi: 10.1070/SM2001v192n01ABEH000534. Google Scholar

[9]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, AMS, (2002). Google Scholar

[10]

G. Dangelmayr, B. Fiedler, K. Kirchgässner and A. Mielke, Dynamics of Nonlinear Waves in Dissipative Systems: Reduction, Bifurcation and Stability,, Pitman Research, (1996). Google Scholar

[11]

M. Efendiev and S. Zelik, The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging,, \emph{Adv. Differential Equations}, 8 (2003), 673. Google Scholar

[12]

B. Fiedler, A. Scheel and M. I. Vishik, Large patterns of elliptic systems in infinite cylinders,, \emph{J. Math. Pures Appl.}, 77 (1998), 879. doi: 10.1016/S0021-7824(01)80002-7. Google Scholar

[13]

A. Yu. Goritskij and M. I. Vishik, Integral manifolds for nonautonomous equation,, \emph{Rend. Accad. Naz. XL, 115 (1997), 106. Google Scholar

[14]

A. Yu. Goritskij and M. I. Vishik, Local integral manifolds for a nonautonomous parabolic equation,, \emph{Journal of Math. Sci.}, 85 (1997), 2428. doi: 10.1007/BF02355848. Google Scholar

[15]

A. Haraux, Systèmes dynamiques dissipatifs et applications,, Masson, (1991). Google Scholar

[16]

A. Ilyin, Averaging for dissipative dynamical systems with rapidly oscillating righ-hand sides,, \emph{Mat. Sbornik}, 187 (1996), 15. doi: 10.1070/SM1996v187n05ABEH000126. Google Scholar

[17]

K. Kirchgässner, Wave-solutions of reversible systems and applications,, \emph{J. Diff. Eqns.}, 45 (1982), 113. doi: 10.1016/0022-0396(82)90058-4. Google Scholar

[18]

O. A. Ladyzhenskaya, O. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type,, Translated from Russian, (1967). Google Scholar

[19]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982). Google Scholar

[20]

A. Mielke, Essential manifolds for an elliptic problem in an infinite strip,, \emph{J. Diff. Eqns.}, 110 (1994), 322. doi: 10.1006/jdeq.1994.1070. Google Scholar

[21]

A. Milke and S. Zelik, Infinite-dimensional trajectory attractors of elliptic boundary value problems in cylindrical domains,, \emph{Uspekhi Mat. Nauk}, 57 (2002), 119. doi: 10.1070/RM2002v057n04ABEH000550. Google Scholar

[22]

D. Peterhof, B. Sandstede and A. Scheel, Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders,, \emph{J. Diff. Eqns}, 140 (1997), 266. doi: 10.1006/jdeq.1997.3303. Google Scholar

[23]

A. Scheel, Existence of fast travelling waves for some parabolic equations: a dynamical systems approach,, \emph{J. Dyn. Diff. Eqns.}, 8 (1996), 469. doi: 10.1007/BF02218843. Google Scholar

[24]

B. W. Schulze, M. I. Vishik, I. Witt and S. V. Zelik, The trajectory attractor for a nonlinear elliptic system in a cylindrical domain with piecewise smooth boundary,, \emph{Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.}, 23 (1999), 125. Google Scholar

[25]

A. Shapoval, Attractors of nonlinear elliptic equations with a small parameter,, \emph{Differ. Uravn.}, 37 (2001), 1239. doi: 10.1023/A:1012582031204. Google Scholar

[26]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[27]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, North-Holland, (1978). Google Scholar

[28]

M. I. Vishik and S. V. Zelik, The trajectory attractor for a nonlinear elliptic system in a cylindrical domain,, \emph{Math. Sbornik}, 187 (1996), 1755. doi: 10.1070/SM1996v187n12ABEH000177. Google Scholar

[29]

M. I. Vishik and S. V. Zelik, The regular attractor for a nonlinear elliptic system in a cylindrical domain,, \emph{Math. Sbornik}, 190 (1999), 23. doi: 10.1070/SM1999v190n06ABEH000411. Google Scholar

[30]

M. Vishik, S. Zelik and V. Chepyzhov, Regular attractors and nonautonomous perturbations of them,, \emph{Mat. Sb.}, 204 (2013), 3. doi: 10.1070/SM2013v204n01ABEH004290. Google Scholar

[31]

S. Zelik, The dynamics of fast nonautonomous travelling waves and homogenization,, in \emph{Proc. of Conf. in Honor of R. Temam 60th annivesary, (2000), 7. Google Scholar

[32]

S. Zelik, Global averaging and parametric resonances in damped semilinear wave equations,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 136 (2006), 1053. doi: 10.1017/S0308210500004881. Google Scholar

[1]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[2]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. Totally dissipative dynamical processes and their uniform global attractors. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1989-2004. doi: 10.3934/cpaa.2014.13.1989

[3]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[4]

Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 643-663. doi: 10.3934/dcds.2008.21.643

[5]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[6]

Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43

[7]

P.E. Kloeden, Victor S. Kozyakin. Uniform nonautonomous attractors under discretization. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 423-433. doi: 10.3934/dcds.2004.10.423

[8]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[9]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. A minimal approach to the theory of global attractors. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2079-2088. doi: 10.3934/dcds.2012.32.2079

[10]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[11]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[12]

Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 585-597. doi: 10.3934/dcds.2002.8.585

[13]

Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347

[14]

Santiago Cano-Casanova. Coercivity of elliptic mixed boundary value problems in annulus of $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3819-3839. doi: 10.3934/dcds.2012.32.3819

[15]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[16]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[17]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[18]

Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

[19]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[20]

Noriaki Yamazaki. Global attractors for non-autonomous multivalued dynamical systems associated with double obstacle problems. Conference Publications, 2003, 2003 (Special) : 935-944. doi: 10.3934/proc.2003.2003.935

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]